See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/227106507

### MtDNA phylogeny provides evidence of generic polyphyleticism for East Asian bagrid catfishes

Article in Hydrobiologia · March 2007 DOI: 10.1007/s10750-006-0401-z

| citations 28 |                                                                                                      | reads<br>255 |                                                                                   |
|--------------|------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------|
| 4 author     | s, including:                                                                                        |              |                                                                                   |
| <b>®</b>     | Zuogang Peng<br>Southwest University in Chongqing<br>106 PUBLICATIONS 2,683 CITATIONS<br>SEE PROFILE |              | Rui Diogo<br>Howard University<br>351 PUBLICATIONS 4,723 CITATIONS<br>SEE PROFILE |
| ٩            | Shunping He<br>Chinese Academy of Sciences<br>303 PUBLICATIONS 4,849 CITATIONS<br>SEE PROFILE        |              |                                                                                   |
| Some of      | the authors of this publication are also working on these related projects:                          |              |                                                                                   |

Sharks and the puzzling origin of our closest tetrapod relatives View project

LIMB NETWORKS View project

PRIMARY RESEARCH PAPER

# MtDNA phylogeny provides evidence of generic polyphyleticism for East Asian bagrid catfishes

Xiying Ku · Zuogang Peng · Rui Diogo · Shunping He

Received: 27 June 2006/Revised: 9 September 2006/Accepted: 15 September 2006/ Published online: 13 December 2006 © Springer Science+Business Media B.V. 2006

**Abstract** We explore the intrafamilial relationships of East Asian bagrid catfishes (*Hemibagrus*, *Pseudobagrus*, *Pelteobagrus*, and *Leiocassis*) based on 245 sequences of 1092 bp mitochondrial cytochrome b fragments. Four haplotypes were found to be shared by *Pseudobagrus ussuriensis*, *Pelteobagrus vachelli* and *Pelteobagrus nitidus*. Phylogenetic trees were performed using the neighbor joining, maximum parsimony, maximum likelihood, and Bayesian likelihood methods. The phylogenetic trees based on NJ, MP, ML and BL inferences strongly support polyphyleticism for the currently recognized genera *Pseudobagrus*, *Pelteobagrus* and *Leiocassis*. However, the species currently assigned to these three genera form

Handling editor: K. Martens

X. Ku  $\cdot$  Z. Peng  $\cdot$  S. He ( $\boxtimes$ ) Laboratory of Fish Phylogenetics and Biogeography, Institute of Hydrobiology, Chinese Academy of Sciences, 7th Donghu South Road, Wuhan, Hubei 430072, P.R. China e-mail: clad@ihb.ac.cn

### X. Ku

Graduate School of the Chinese Academy of Science, Beijing 100039, P. R. China

### R. Diogo

Laboratory of Functional and Evolutionary Morphology, University of Liège, Liège 4000, Belgium a robustly monophyletic group with relatively low genetic divergence. The structure of maxillary barbels and serrations on the anterior edge of the pectoral spines seem to be indicatory of appropriate phylogenetic traits. We propose that only *Hemibagrus* and *Pseudobagrus* are the only valid genera of East Asian bagrids.

**Keywords** Bagridae  $\cdot$  Siluriformes  $\cdot$  Molecular phylogeny  $\cdot$  Cytochrome  $b \cdot$  Taxonomy

### Introduction

Historically, attempts to elucidate evolutionary relationships among members of family Bagridae (Teleostei: Siluriformes) were not as numerous as for other catfishes. It may be largely the consequence of the overwhelming species diversity and their wide distribution (e.g., Mo, 1991; Ng, 2003). The bagrid catfishes occur widely in both fresh and brackish water throughout Asia (Southeast, South and East Asia) and Africa. It is a large and morphologically diverse group comprising up at least 144 species belonging to 18 genera, according to a recent overview by Teugels (2003).

The Bagridae *sensu* Mo (1991) is generally accepted by most catfish specialists though there is still some uncertainty regarding the monophyly or the validity of some genera (e.g., Diogo et al., 1999; Diogo, 2003, 2004; Ng, 2003; Teugels, 2003;

|                 | Subfamily         | Classifications of genera                                                                                                                                                                                 |
|-----------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Regan<br>(1911) | Chrysichthyinae   | Pseudobagrus, Gephyroglanis, Clarotes, Chrysichthys, Rita; Auchenoglanis, Notoglanidium, Parauchenoglanis                                                                                                 |
|                 | Bagrinae          | Bagrus, Mystus, Leiocassis, Bagroides, Olyra                                                                                                                                                              |
|                 | Chrysichthyinae   | Pelteobagrini: Pseudobagrus, Pelteobagrus, Coreobagrus, Horabagrus                                                                                                                                        |
|                 |                   | Chrysichthyini: Chrysichthys, Amarginops, Clarotes, Gnathobagrus                                                                                                                                          |
|                 |                   | Gephyroglanidini: Gephyroglanis, Leptoglanis, Phyllonemus                                                                                                                                                 |
| Jayaram         | Bagrinae          | Porcus (renamed Bagrus later), Mystus, Leiocassis, Heterobagrus                                                                                                                                           |
| (1968)          | Ritinae           | Rita, Rama                                                                                                                                                                                                |
|                 | Auchenoglanidinae | Auchenoglanis, Notoglanidium, Parauchenoglanis, Liauchenoglanis                                                                                                                                           |
|                 | Bagroidinae       | Bagroides, Bagrichthys                                                                                                                                                                                    |
| Mo (1991)       | Bagrinae          | Aorichthys, Bagrichthys, Bagroides, Batasio, Pseudomystus, Olyra, Neotropius, Mystus, Pseudobagrus, Leiocassis, Pelteobagrus, Hemibagrus, Bagrus                                                          |
|                 | Ritinae           | Rita, Nanobagrus                                                                                                                                                                                          |
| Ng (2003)       |                   | Bagrichthys, Bagroides, Bagrus, Batasio, Pseudomystus, Olyra, Neotropius, Mystus,<br>Pseudomystus, Rama, Rita, Sperata, Hyalobagrus, Hemileiocassis, Hemibagrus<br>Pseudobagrus, Leiocassis, Pelteobagrus |

Table 1 Different hypotheses concerning the composition of family Bagridae

see also Table 1). According to Mo (1991), the bagrid genera *Pseudobagrus* plus *Pelteobagrus* are native to East Asia except for a questionable *Pelteobagrus ornatus* in Malaysia. In total, there are about 40 bagrid species of four different genera (*Pseudobagrus, Pelteobagrus, Leiocassis*, and *Hemibagrus*) occurring in East Asia, i.e. China, Japan, Korean Peninsula, eastern Siberia and northern Vietnam.

Despite previously considerable morphological, allozyme and osteological work (e.g., Tilak, 1965; Mo, 1991; Maeda et al., 1994; Dai et al., 1998; Diogo et al., 1999), the phylogenetic relationship within the Bagridae are still equivocal. Mo (1991) undertook a comprehensive morphological work on this group but his results failed to fully resolve the generic relations, especially those among Chinese species. Okazaki et al. (1999) sequenced cytochrome b (cyt b) fragments to investigate the phylogeny of the bagrid catfishes. They stressed that, in order to solve the general phylogeny of this family, it is crucial to solve the intrarelationships of Chinese bagrids since the bagrid groups that display a greater number of species are precisely those distributed in Mainland China. Peng et al. (2002) studied the phylogeny of East Asian bagrids using cyt b sequences, but their study resulted in relatively low phylogenetic information, as the Chinese samples included were rather incomplete in their taxon coverage.

The starting point of our work is to obtain a better understanding of the intrafamilial relationships among East Asian bagrids, by uniting previous limited molecular information with a comprehensive sampling of Chinese bagrid populations in the present study.

### Materials and methods

### Sample collection

Here we adopt the classification of the Bagridae sensu Chu et al. (1999). Since we detected in preliminary studies by accident that different species shared the same haplotypes, taxon sampling was increased to a total of 245 sequences in order to reduce phylogenetic error (Zwickl & Hillis, 2002). For the 245 sequences, 242 represent 23 bagrid species and the remaining 3 represent outgroups. Among the 245 sequences, 27 were retrieved from GenBank and 218 were newly determined. All the specimens were deposited in the Fish Collection of the Institute of Hydrobiology, the Chinese Academy of Sciences. All tissues used for DNA extraction were preserved in 95% ethanol and all the sequences have been deposited in GenBank. Collection localities and species vouchers are given in Table 2. Due to the ambiguity concerning the identity of the sistergroup of bagrids (e.g., Diogo, 2003), members of

Table 2 Bagrid samples used in the present study and their locations

| Taxon and localities    | Haplotype  | Size   | Species-voucher <sup>a</sup>                 | AC No.                 |
|-------------------------|------------|--------|----------------------------------------------|------------------------|
| Pelteobagrus fulvidraco |            |        |                                              |                        |
| Yuevang, Hunan          | F1         | 1      | IHB 0305154                                  | AY912282               |
| 9 8,                    | F3         | 1      | IHB 0305155                                  | AY912288               |
|                         | F5         | 1      | IHB 0305156                                  | AY912291               |
|                         | F6         | 2      | IHB 0305153, 0305157                         | AY912298               |
| Taovuan, Hunan          | F6         | 1      | IHB 0307248                                  | AY912297               |
| 1.009.0000, 1100000     | F7         | 1      | IHB 0307249                                  | AY912301               |
| Jinkou, Wuhan           | F2         | 1      | IHB 0380607                                  | AY912283               |
| onnou, wunan            | F3         | 1      | IHB 0305180                                  | AY912285               |
|                         | F6         | 3      | IHB 0380608–0380610                          | AY912293               |
| Jianoxia Wuhan          | F3         | 2      | IHB 0380612 0380316                          | AY912284               |
| stangala, tranan        | F6         | 3      | IHB 0380611, 0380617–0380618                 | AY912292               |
| Duchang Jiangxi         | F3         | 2      | IHB 0305185-0305186                          | AY912286               |
| Duchang, Jungxi         | F4         | 1      | IHB 0305182                                  | AY912200               |
|                         | F6         | 2      | IHB 0305182<br>IHB 0305183_0305184           | AY912294               |
| Shangrao Jiangyi        | F3         | - 1    | IHB 0305193                                  | AY912287               |
| Shangrao, shangxi       | F6         | 7      | IHB 0305187_0305192 0305194                  | AY912207               |
|                         | F6         | ,<br>1 | 111D 0505107 0505172, 0505174                | Δ F430376*             |
| Leshan Sichuan          | F3         | 1      | IHB 0305106                                  | A V012280              |
| Hechuan Chongging       | F6         | 1      | IHB 0/05212                                  | A V012205              |
| ricentian, chongqing    | F10        | 1      | IHB 0405212<br>IHB 0405213                   | A V012316              |
| Jian'ou Fujian          | F6         | 1      | IIID 0403213<br>IHB 0404208                  | A V012200              |
| Jian ou, Pujian         | F13        | 1      | IIIB 0404208                                 | A V012211              |
| Jianwang Fujian         | F15<br>F6  | ے<br>1 | IHB 0404209-0404210                          | A 1912511<br>A V012300 |
| Changting Eujian        | F20        | 1      | IIID 0303204                                 | A 1912300              |
| Changung, Fujian        | F20<br>F21 | 1      | IIIB 0404214<br>IIIB 0404212                 | A 1912317              |
| Vanashua Cuanavi        | F21<br>F2  | 1      | IIID 0404215<br>IIID 0205161 0205162 0404215 | A 1912518              |
| Tangshuo, Guangxi       | F0<br>E0   | 3      | IHB 0505101, 0505105, 0404215                | A 1912302              |
|                         | F9<br>E10  | 1      | HID 0205162                                  | AF450575*              |
|                         | F10        | 1      | IHB 0305162                                  | A Y 912305             |
|                         | F11<br>F12 | 1      | IHB 0404210                                  | A Y 912308             |
| r · c ·                 | F12        | 1      | IHB 0404217                                  | A Y912310              |
| Jinxiu, Guangxi         | F8         | 1      | IHB 0305104                                  | A Y 912303             |
| Yongfu, Guangxi         | F8         | 2      | IHB 0404218-0404219                          | A Y 912304             |
|                         | F11        | 1      | IHB 0404220                                  | A Y 912309             |
| Rong'an, Guangxi        | F10        | 1      | IHB 0305195                                  | AY912306               |
| Liuzhou, Guangxi        | F10        | 1      | IHB 0305206                                  | A Y 912307             |
| Biliuhe, Liaoning       | F14        | 1      | IHB 0305166                                  | A Y 912312             |
| <b>* *</b> • • •        | F15        | 1      | IHB 0305175                                  | AY912313               |
| Kaiyuan, Liaoning       | F16        | 1      | IHB 030/242                                  | AY912314               |
| <b>T</b> 1 <b>T</b> 1   | FT7        | 1      | IHB 0305205                                  | AY912315               |
| Tonglu, Zhejiang        | F22        | 1      | IHB 0404211                                  | A Y 912319             |
| •7                      | F23        | 1      | IHB 0404212                                  | AY912320               |
| Korea                   | F18        | 1      |                                              | AB015992*              |
| Pelteobagrus eupogon    |            |        |                                              |                        |
| Jinkou, Wuhan           | E1         | 1      | IHB 0305179                                  | AY912323               |
|                         | E4         | 1      | IHB 0305176                                  | AY912326               |
|                         | E6         | 1      | IHB 0305181                                  | AY912329               |
|                         | E9         | 1      | IHB 0305177                                  | AY912332               |
|                         | E10        | 1      | IHB 0305178                                  | AY912333               |
| Yueyang, Hunan          | E2         | 1      | IHB 0305202                                  | AY912324               |
|                         | E3         | 2      | IHB 0305198–0305199                          | AY912325               |
|                         | E4         | 3      | IHB 0305197, 0305200-0305201                 | AY912327               |
|                         | E5         | 1      | IHB 0305158                                  | AY912328               |
|                         | E7         | 1      | IHB 0305203                                  | AY912330               |
|                         | E8         | 1      | IHB 0305159                                  | AY912331               |
| Pelteobagrus nitidus    |            |        |                                              |                        |

### Table 2 continued

| Taxon and localities     | Haplotype   | Size   | Species-voucher <sup>a</sup> | AC No.                 |
|--------------------------|-------------|--------|------------------------------|------------------------|
| Ha'erbin                 | N1          | 2      | IHB 0305233, 0305238         | AY912334               |
|                          | N3          | 1      | IHB 0305234                  | AY912335               |
|                          | N4          | 4      | IHB 0305235-0305237, 0305239 | AY912336               |
| Fuyang, Zhejjang         | N6          | 1      | IHB 0305218                  | AY912337               |
| i ujung, Englung         | N7          | 1      | IHB 0305220                  | AY912338               |
|                          | N10         | 1      | IHB 0305220<br>IHB 0305217   | Δ ¥912341              |
|                          | N11         | 1      | 111D 0303217                 | A E/16802*             |
|                          | N11<br>N15  | 1      | IUD 0205216                  | AV012245               |
|                          | INIJ<br>N17 | 1      | ППВ 0305210                  | A 1912343              |
|                          | N1/         | 1      | IHB 0305215                  | A Y 912547             |
|                          | N22         | 1      | IHB 0305219                  | A Y 912353             |
| Jian'ou, Fujian          | N19         | 1      | IHB 0404202                  | AY912349               |
|                          | N20         | 1      | IHB 0404205                  | AY912350               |
|                          | N21         | 1      | IHB 0404203                  | AY912351               |
|                          | N22         | 1      | IHB 0404204                  | AY912354               |
| Jianyang, Sichuan        | N18         | 1      | IHB 0305246                  | AY912348               |
| Yueyang, Hunan           | N8          | 1      | IHB 0305214                  | AY912339               |
|                          | N14         | 1      | IHB 0305211                  | AY912344               |
|                          | N16         | 1      | IHB 0305210                  | AY912346               |
|                          | N22         | 1      | IHB 0305212                  | AY912352               |
| Taovuan, Hunan           | N9          | 1      | IHB 0307258                  | AY912340               |
| Tuoyuun, Tunun           | N12         | 1      | IHB 0307256                  | AY912342               |
|                          | N12         | 1      | IHB 0307257                  | AY912342               |
| Heijang Sichuan          | 113         | 1      | IHB 0404297                  | A V012355              |
| Tiejiang, Stenuan        | U6          | 1      | HB 0404208 0404200           | A V012356              |
|                          | 110         | ے<br>1 | HID 0404296-0404299          | A V012257              |
| 17                       |             | 1      | IND 0404290                  | A 1912557              |
| Korea                    | N2          | 1      |                              | AB015994*              |
| Russia                   | N5          | 1      |                              | AB015993*              |
| Pelteobagrus vachelli    |             |        |                              |                        |
| Hechuan, Chongqing       | V1          | 1      | IHB 0405214                  | AY912358               |
|                          | V5          | 2      | IHB 0405215, 0405217         | AY912362               |
|                          | V12         | 1      | IHB 0405216                  | AY912369               |
| Zhangping, Fujian        | V3          | 1      | IHB 0404206                  | AY912360               |
|                          | V4          | 1      | IHB 0404207                  | AY912361               |
| Fujian, Jian'ou          | V6          | 1      |                              | AF416896*              |
| Yuevang, Huana           | V2          | 1      | IHB 0305213                  | AY912359               |
| Chongzuo, Guangxi        | V7          | 1      | IHB 0380507                  | AY912363               |
| Tenoxian Guanoxi         | V8          | 1      | IHB 0404290                  | AY912364               |
| Tenganan, Guungai        | V9          | 3      | IHB 0404291_0404292 0404294  | A V912365              |
|                          | V10         | 1      | IHB 0404293                  | A V012366              |
| Hajjang Sichuan          | V10<br>V11  | 1      | IHB 0404223                  | A V012368              |
| Hejiang, Sichuan         | V 11<br>112 | 1      | IIID 0404225<br>IIID 0404202 | A 1912300<br>A V012270 |
|                          | U3<br>U9    | 1      | IIID 0404302                 | A 1912570              |
|                          | U8          | 2<br>1 | IHB 0404301, 0404305         | A Y 9125/1             |
|                          | 010         | 1      | IHB 0404304                  | AY912372               |
| Pseudobagrus ondon       |             | _      |                              |                        |
| Changting, Fujian        | 01          | 3      | IHB 0404198–0404200          | AY912373               |
|                          | O2          | 1      | IHB 0404196                  | AY912374               |
|                          | O4          | 1      | IHB 0404197                  | AY912376               |
| Jian'ou, Fujian          | O3          | 1      | IHB 0404194                  | AY912375               |
| Fuyang, Zhejiang         | O5          | 1      | IHB 001101004                | AY912377               |
| Pseudobagrus tenuis      |             |        |                              |                        |
| Tonglu, Zhejiang         | TE1         | 3      | IHB 0404190-0404192          | AY912381               |
| 8, <u></u> JB            | TE2         | - 1    | IHB 0404193                  | AY912382               |
|                          | TE3         | 1      | IHB 0404189                  | AV912383               |
| Psoudobaarus ussuriansis | 11.5        | 1      |                              | 111/12000              |
| Fuyang Zhajiang          | I 11        | 1      | IHB 001101007                | A V012202              |
| r uyang, Znejiang        | U1<br>U10   | 1      |                              | A V012402              |
|                          | 010         | 1      | 111D 001101008               | A 1912402              |

### Table 2 continued

| Taxon and localities                     | Haplotype       | Size   | Species-voucher <sup>a</sup>       | AC No.                 |
|------------------------------------------|-----------------|--------|------------------------------------|------------------------|
| Jian'ou, Fujian                          | U2              | 1      | IHB 001101006                      | AY912393               |
| , <b>,</b>                               |                 | 1      |                                    | AF499597*              |
|                                          | U3              | 1      | IHB 001108001                      | AY912394               |
|                                          | U6              | 1      | IHB 0404185                        | AY912398               |
|                                          | U8              | 5      | IHB 001108007. 0380502. 001108005  | AY912400               |
|                                          | 00              | U      | IHB 001108010, 0404174             | 111,12100              |
|                                          | 110             | 1      | IHB 0380503                        | AY912401               |
| Shanghang Fujian                         | 115             | 1      | IHB 0404184                        | AY912396               |
| Shunghung, Fujiun                        | U6              | 1      | IHB 0404172                        | Δ¥912397               |
| Zhangping Fujian                         | U11             | 3      | IHB 0404172<br>IHB 0404186 188     | A V012/03              |
| Haijang Sichuan                          |                 | 1      | IHB 0404303                        | A V012305              |
| Tonovion, Cuonovi                        | U4<br>U7        | 1      | HID 0404303                        | A 1912393              |
| Dani dah annia matti                     | 07              | 1      | ППВ 0404293                        | A 1912599              |
| Vienen Greeneri                          | D1              | 1      | HID 0404215                        | A X/012404             |
| Aluren, Guangxi                          | P1<br>P2        | 1      | IHB 0404315                        | A Y 912404             |
|                                          | P3              | 4      | IHB 0404311–0404313, 0404316       | AY912406               |
|                                          | P4              | 1      | IHB 0404314                        | AY91240/               |
| Lipu, Guangxi                            | P2              | 1      | IHB 0404333                        | AY912405               |
|                                          | P9              | 3      | IHB 0404334–0404336                | AY912412               |
| Yangshuo, Guangxi                        | P7              | 1      | IHB 0404286                        | AY912410               |
|                                          | P9              | 4      | IHB 0404284-85, 0404287, 0404289   | AY912413               |
| Yongfu, Guangxi                          | P5              | 5      | IHB 0404323–25, 0404327–0404328    | AY912408               |
|                                          | P6              | 1      | IHB 0404326                        | AY912409               |
| Taoyuan, Hunan<br>Pseudobagrus truncatus | P8              | 1      | IHB 2003134                        | AY912411               |
| Hechuan, Chongqing                       | TR1             | 1      | IHB 0405211                        | AY912414               |
|                                          | TR2             | 1      | IHB 0405209                        | AY912415               |
|                                          | TR3             | 1      | IHB 0405210                        | AY912416               |
|                                          | TR4             | 1      |                                    | AF416880*              |
|                                          | TR5             | 1      | IHB 0405207                        | AY912417               |
|                                          | TR6             | 1      | IHB 0405208                        | AY912418               |
| Leiocassis crassilabris                  | 110             | 1      | 1111 010200                        | 111)12110              |
| Mudong Chongging                         | C1              | 1      |                                    | ΔF416882*              |
| Mudolig, Chongqing                       |                 | 2      | IHB 0405220 0405221                | A V012/27              |
| Hechuan Chongging                        |                 | 1      | IHB 0405210                        | A V012427              |
| Hojiong Sichuon                          |                 | 1      |                                    | A V012420              |
| Lionyong Eujiong                         | C4<br>C6        | 1      | IND 0404222<br>IND 0280615 0205221 | A 1912429              |
| Jianyang, Fujiang                        |                 | ے<br>1 | HID 0404201                        | A 1912431              |
| Jian ou, Fujian                          | C/<br>C2        | 1      | IHB 0404201                        | A Y 912432             |
| Chongzuo, Guangxi                        | C2              | 8      | IHB 0380504–0380506, 0303111       | AY912419               |
|                                          | <b>C2</b>       |        | IHB 0380508–09, 0303113, 0301129   | 1 7/010 100            |
| Rong'an, Guangxi                         | C2              | 1      | IHB 0380614                        | AY912420               |
| Liuzhou, Guangxi                         | C2              | 2      | IHB 030/254–030/255                | AY912421               |
| Yongfu, Guangxi                          | C8              | 2      | IHB 0404329–0404330                | AY912384               |
|                                          | C2              | 5      | IHB 0404337–0404341                | AY912422               |
| Yangshuo, Guangxi                        | C2              | 3      | IHB 0404320–0404322                | AY912423               |
| Lipu, Guangxi                            | C2              | 1      | IHB 0404318                        | AY912424               |
|                                          | C5              | 2      | IHB 0404317, 0404319               | AY912430               |
| Zhaoping, Guangxi                        | C3              | 2      | IHB 0301127-0301128                | AY912425               |
| Chenxi, Hunan                            | C3              | 1      | IHB 0305243                        | AY912428               |
| Leiocassis longirostris                  |                 |        |                                    |                        |
| Mudong, Chongqing                        | L1              | 2      | T020102MD                          | AY912440               |
| 0.010                                    |                 | 1      |                                    | AF416889*              |
| Heijang, Sichuan                         | L2              | 1      | IHB 0305228                        | AY912441               |
| ,                                        | $\overline{L3}$ | 1      | IHB 0305229                        | AY912442               |
| Leiocassis argentivittatus               | 20              | -      |                                    |                        |
| Jinkou, Wuhan                            | A1              | 1      | IHB 0305242                        | AY912443               |
| children, it unull                       | Δ2              | 1      | IHB 0305240                        | ΔΥ01244                |
|                                          | Δ3              | 1      | IHB 0305240                        | Δ V012445              |
|                                          | 113             | T      | 1110 0303271                       | 111)12 <del>44</del> J |

| Table 2 continued |  |
|-------------------|--|
|-------------------|--|

| Taxon and localities     | Haplotype | Size | Species-voucher <sup>a</sup> | AC No.     |
|--------------------------|-----------|------|------------------------------|------------|
| Hemibagrus macropterus   |           |      |                              |            |
| Mudong, Chongqing        | H1        | 1    |                              | AF416890*  |
| Yangshuo, Guangxi        | H2        | 1    |                              | AF430373*  |
| Wuyuan, Jiangxi          | H3        | 1    |                              | AF430374*  |
| Hemibagrus guttatus      | H5        | 1    |                              | AF416886*  |
| Jinxiu, Guangxi          | H4        | 2    | IHB 0305247-0305248          | AY912446   |
| Hemibagrus nemurus       | H6        | 1    |                              | AF416882*  |
| Pseudobagrus kyphus      |           | 1    |                              | AB085662*  |
| Pseudobagrus aurantiacus |           | 1    |                              | AB015989*  |
| Pseudobagrus tokiensis   |           | 1    |                              | AB015986*  |
| Pseudobagrus tokiensis   |           | 1    |                              | NC_004697* |
| Pseudobagrus nudiceps    |           | 1    |                              | AB015988*  |
| Pseudobagrus koreanus    |           | 1    |                              | AB015991*  |
| Pseudobagrus brevicorpus |           | 1    |                              | AB015990*  |
| Pseudobagrus ichikawai   |           | 1    |                              | AB015987*  |
| Mystus sp.               |           | 1    |                              | AY458893*  |
| Clarotes laticeps        |           | 1    |                              | AF126821*  |
| Liobagrus anguillicauda  |           | 1    |                              | AF416888*  |
| Silurus meridionalis     |           | 1    |                              | AF416892*  |

<sup>a</sup> IHB is the Institute of Hydrobiology, Chinese Academy of Sciences

\* Asterisk (\*) indicates the sequences retrieved from GenBank

three different families were used as outgroups following the procedure of Peng et al. (2005). These are: *Clarotes laticeps* (Clarotidae, accession number AF126821), *Liobagrus anguillicauda* (Amblycipitidae, AF416888), and *Silurus meridionalis* (Siluridae, AF416892).

## DNA extraction, PCR amplification and sequencing

Total genomic DNA was extracted from muscles following a standard proteinase K, phenol: chloroform extraction procedure and precipitation in isopropyl alcohol. The cyt b fragments was amplified and sequenced with the universal primers L14724 and H15915 (Xiao et al., 2001). The fragments were compared with the previously published complete 1138 bp cyt b gene of bagrids (Peng et al., 2002) to confirm that the target region was amplified by polymerase chain reaction (PCR). The reaction mixture contained 50-100 ng of template DNA, 2-3 µl of each primer,  $6 \mu l$  of  $10 \times$  reaction buffer, 0.75  $\mu l$  of dNTPs (10 mM), and 2.0 units of Taq polymerase in a total volume of 60 µl. The PCR profile consisted of an initial denaturation at 95°C for 3 min, and then 35 cycles of 30 s at 94°C (denaturation), 30 s at 56–59°C (annealing), 70 s at 72°C (extension), and a final extension at 72°C for 10 min.

PCR products were visualized and cut from a 0.8% low melting point agarose gel stained with ethidium bromide, then purified using the BioStar glassmilk DNA purification kit following the manufacturer's protocol. All sequences have been deposited in GenBank (accession numbers in Table 2).

### Sequences analysis

Preliminary mutiple-sequence alignment was performed using Clustal X (Thompson et al., 1997) with default settings. The computer-generated alignment was then verified by eye and adjusted in SEAVIEW alignment editor (Galtier et al., 1996).

Prominent bias in base composition has been viewed as a typical feature of cyt b gene, accordingly base compositional biases were calculated. Nucleotide substitution patterns were analyzed using PAUP\* version 4.0b10 (Swofford, 2002). Empirically, we plotted the uncorrected pairwise distance (*p*-dist) against Tamura-Nei distance (*TrN*-dist) to investigate putative substitution saturation. Comparisons among different

species were performed in MEGA v.2 (Kumar et al., 2001) using the uncorrected *p*-distance. Populations of distinct species were assigned as independent groups (results are not shown).

### Phylogenetic analysis

The aligned sequences included 218 newly obtained ones and 27 retrieved sequences. Identical sequences were identified and represented in the analyses by one sequence only. A hierarchical series of likelihood ratio tests (LRTs) was implemented in the Modeltest 3.6 (Posada & Crandall, 1998) to determine the best model of evolution for neighbor-joining (NJ), maximum likelihood (ML) and Bayesian likelihood (BL) analyses. The best-fit model selected was general time-reversible (GTR, Yang, 1994), with some sites were assumed to be invariable (I) and variant sites were assumed to follow a discrete gamma (G) distribution. NJ analysis were implemented in PAUP\* starting from NJ tree searches. Tree topologies were postulated using the GTR + I + G substitution model with parameters G and I estimated by Modeltest. With respect to the parsimony criterion, the most-parsimonious (MP) tree or trees were sought by using heuristic searches with starting trees obtained via the tree-bisection-reconnection (TBR) search algorithm in which taxa were added randomly with 100 iterations. To correct the possible effects of saturation, the first and second positions were weighted 3 and 5 times of the third position; meanwhile nucleotide substitution patterns were calculated in PAUP, correspondingly transitions and transversions were unequal weighted (Ti/ Tv = 3/1). Degree of confidence assigned to internodes was assessed using nonparametric bootstrapping with 1,000 and 500 pseudo-replicates for NJ and MP analysis, respectively.

Using the model selected, ML trees were constructed in the software PHYML v.2.4.4 (Guindon & Gascuel, 2003) with 100 pseudoreplicates. We conducted Bayesian likelihood analysis (BL) in MrBayes 3.1 (Ronquist & Huelsenbeck, 2003). The BL inference was conducted using the GTR + I + G model, with data matrix partitioned by codon. Starting trees were random, and phylogenetic constraints were not used. The Bayesian inference was applied to four Markov chains simultaneously each for  $1.0 \times 10^6$  generations and sampled every 100th topologies. We discarded the first 1000 trees obtained before the Markov chain reached convergence. The posterior probability of the phylogeny and tree topologies were then determined from the preserved trees. A majority consensus tree was constructed from the remaining trees. This procedure was repeated two times to assure the reliability.

Tests of alternative topologies

The phylogenetic trees based on NJ, MP and BL inferences strongly support polyphyleticisms of genera Pseudobagrus, Pelteobagrus and Leiocassis. To further test the monophyly of these three genera, constrained trees were constructed using maximum parsimony method and implemented in PAUP\*. Comparison of competing topologies, namely NJ, MP, BL and constraint trees (the ML analysis in PHYML produced a tree that was identical to the Bayesian tree, thus not included in the comparison) was carried out using the likelihood-based Kishino-Hasegawa (KH) test (Kishino & Hasegawa, 1989) and parsimony-based twotailed Wilcoxon signed-ranks tests (Templeton, 1983), making use of 1000 bootstrap replicates with RELL (resampling estimated log-likelihood) optimization implemented in PAUP\* (P > 0.05 in each case). Results are shown in Table 3.

### Results

Cytochrome b gene nucleotide composition and substitution saturation

For the 245 sequences (outgroups included), 133 haplotypes were identified from 1092 bp fragments. No insertions/deletions were observed. Mean base composition was similar to that previously reported for bagrids (Peng et al., 2002) with an expected strong antiguanine bias (G: 7.96%, A: 32.81%, C: 34.59%, and T: 24.64%). The lower value was largely due to the instability of G content at the three codon positions: 25.82% at the first, 12.90% at the second and 2.58% at the third. Mean standard

| Topology                  | Wilcoxon sign     | ed-ranks t | est       |           | Kishino–Hase       | egawa test |        |
|---------------------------|-------------------|------------|-----------|-----------|--------------------|------------|--------|
|                           | Maximum parsimony |            |           |           | Maximum likelihood |            |        |
|                           | Tree length       | Ν          | Z         | Р         | $-\ln L$           | Diff ln L  | Р      |
| MP                        | 1903              | 139        | - 2.8580  | 0.0043*   | 9404.0554          | 123.2987   | 0.000* |
| NJ                        | 2000              | 130        | - 8.7638  | < 0.0001* | 9454.0750          | 173.3183   | 0.000* |
| Bayesian likelihood       | 1857              | Best       |           |           | 9280.7567          | Best       |        |
| Pseudobagrus <sup>a</sup> | 10230             | 383        | - 16.9615 | < 0.0001* | 25982.2772         | 16701.5205 | 0.000* |
| Pelteobagrus <sup>a</sup> | 9938              | 383        | - 16.9616 | < 0.0001* | 24843.5213         | 15562.7646 | 0.000* |
| Leiocassis <sup>a</sup>   | 10082             | 383        | - 16.9616 | < 0.0001* | 26341.1314         | 17060.3747 | 0.000* |

Table 3 Two-tailed Wilcoxon signed-ranks tests and Kishino-Hasegawa (KH) test for comparison of alternative topologies

\* A significant difference between topologies is indicated with an asterisk

<sup>a</sup> Maximum parsimony trees recovered from constraint search

compositional deviations for all codon positions was 0.15. We observed the highest bias at the third codon position (0.386), intergrade at the second (0.227) and the smallest at the first position (0.02).

Among the entire 1092 bp region, 63 nucleotide positions were variable and 401 sites were parsimony informative polymorphic for MP analysis. All plotting between the uncorrected *p*-dist and the *TrN*-dist implied the substitutions were saturated in third codon positions but not in the first and second codon positions (results not shown).

Haplotypes shared by different species and interspecific mtDNA diversity

Four haplotypes (U3, U6, U8 and U10) were found to be shared by different generic species. One *Pseudobagrus ussuriensis* individual shared haplotype U10 with one *Pelteobagrus vachelli* individual. Two *Pseudobagrus ussuriensis* samples shared U6 with two *Pelteobagrus nitidus* samples. One *Pelteobagrus vachelli* sample and one *Pelteobagrus nitidus* sample shared haplotype U3 with one *Pseudobagrus ussuriensis* sample, while one *Pelteobagrus nitidus* sample and two *Pelteobagrus vachelli* samples shared U8 with five *Pseudobagrus ussuriensis* samples (see Table 2 for accession numbers).

The estimates of interspecific genetic distance showed relatively low level of genetic diversity among *Pseudobagrus*, *Pelteobagrus* and *Leiocassis* species, even among geographically distant populations (not shown). The maximum pairwise divergence value observed was 0.144 (uncorrected *p*-dist), between *Pseudobagrus pratti* and *Leiocassis argentivittatus*. The minimum pairwise divergence value was 0.017, between Chinese populations of *Pseudobagrus ondon* and Japanese sample of *Pseudobagrus aurantiacus*. Genetic divergence among *Pseudobagrus tenuis*, *Pseudobagrus ussuriensis*, *Leiocassis longirostris*, and *Leiocassis crassilabris* was 0.018–0.019. In contrast, genus *Hemibagrus* showed striking divergence with the above three genera, for the maximum divergence was also beyond 0.155.

### Phylogenetic relationships among bagrids

Both the Two-tailed Wilcoxon signed-ranks tests and Kishino–Hasegawa (KH) test rejected NJ, MP and the constraint trees as they were significantly less consistent than the Bayesian tree (Table 3). However, most of the clades are commonly found in different tree topologies. According to the Bayesian tree, *Pseudobagrus*, *Pelteobagrus* and *Leiocassis* bagrids were mainly divided into two lineages (referred to as lineage I and lineage II in Fig. 1) except for *Leiocassis argentivittatus*, *Pseudobagrus ichikawai* and *Pseudobagrus kyphus*.

For lineage I, clade A was a robustly supported group (100% posterior probabilities) encompassing Leiocassis crassilabris (C1–C8), Pseudobagrus ussuriensis (U1-U11), Pseudobagrus tenuis (TE1-TE3) and Leiocassis longirostris (L1–L3). However, the kin-framework among these four species was weakly supported (62% and 49% Bayesian confidences) or collapsed terminal nodes. *Pelteobagrus vachelli* (V1–V11) was closely related to clade A with high confidence (97% in Bayesian inference). *Leiocassis nitidus* (N2, collected from Russia) and *Leiocassis ussuriensis* (N5, collected from Korea) appeared in a clade which including the Chinese populations of *Pelteobagrus nitidus* with 100% posterior probabilities. This clade appeared as the sister-group of clade A plus *Pelteobagrus vachelli*, but with only 50% confidences. *Pseudobagrus pratti* (*P1–P9*) and *Pseudobagrus truncatus* (TR1-TR6) occupied the most basal position in lineage I.

Lineage II consisted of two groups. In the first one, the populations of Pelteobagrus fulvidraco (F1-F23) were closely affiliated to Pelteobagrus eupogon (E1–E10) with 100% posterior probabilities (clade B). The second group (clade C) clustered Japanese and Korean samples of Pseudobagrus species (P. aurantiacus, P. tokiensis, P. nudiceps, P. koreanus, and P. brevicorpus) and Chinese samples of Pseudobagrus ondon (O1-O6). Noteworthily, only the sister-group relationship between P. aurantiacus and P. ondon was strongly supported (100% Bayesian confidence), and the relationships among other Pseudobagrus fishes in clade C did not appear so supported, since the branches uniting these bagrids were either poorly supported or essentially collapsed into polytomies (Fig. 1).

Species Leiocassis argentivittatus plus Pseudobagrus ichikawai appeared in a clade clustering with the group including lineages I and II; Pseudobagrus kyphus was robustly supported to be sister-group of the other bagrids except for Hemibagrus species (Fig. 1).

As also seen in Fig. 1, *Hemibagrus nemurus* and *Mystus* sp. were grouped, with 87% posterior probability, in a clade that appeared as the sistergroup of *Hemibagrus guttatus* plus *Hemibagrus micropterus*. Thus, the phylogenetic tree obtained *Hemibagrus* appears as a non-monophyletic group.

### Discussion

### Polyphyly of genera *Pseudobagrus*, *Pelteobagrus* and *Leiocassis*

Ng (2003) comprehensively reviewed the current status of systematics of bagrid catfish. He

concluded that bagrids appear to have relatively few synapomorphies that characterize the subgroups within the family which also complicated the study of their intrafamilial relationships. Our study could serve as another piece of evidence for this overview, since the phylogenetic trees do not support the monophyly of Pseudobagrus, Pelteobagrus or Leiocassis (Fig. 1). For genus Pseudobagrus, P. ussuriensis, P. tenuis, P. pratti and P. truncatus clustered with Pelteobagrus and Leiocassis fishs in lineage I while P. ondon, P. aurantiacus, P. tokiensis, P. nudiceps, P. koreanus and P. brevicorpus grouped in lineage II. For genus Pelteobagrus, only the sister-group relationship between P. fulvidraco and P. eupogon was strongly supported while for the Leiocassis, the L. crassilabris and L. longirostris samples were rather closely affiliated to Pseudobagrus samples than to the congeneric L. argentivittatus. It should be noted that Mo (1991) also pointed out that the Leiocassis was non-monophyletic.

The appearance of polyphyleticism can often be elucidated by the interspecific hybridization and subsequent recombination of different mtDNA lineages (e.g., Avise, 1994). Interspecific hybridization and admixture may also occur in mitochondrial genome (Goropashnaya et al., 2004a, b), which has previously been considered to be strictly of maternal inheritance without recombination and, it is not uncommon to find mitochondrial introgression. Alternatively, with respect to generic traits polyphyleticism in molecular trees was highlighted as an anticipate stage temporally intermediate to polyphyly and reciprocal monophyly, due to incomplete lineage sorting in the gene analyzed. However, it seems hard to determine which of the two hypotheses is applicable for the situation found in the East Asian bagrids. In fact, the low level of interindividual polymorphism in cyt b gene investigations of bagrid populations could appear, at first sight, to favor the hybridization hypothesis, since the polymorphic allele in question would be more randomly distributed among individuals under a scenario of incomplete sorting (Razafimandimbison et al., 2005). However, hybridization was mainly suggested to be responsible for nonmonophyly of sympatric species that spawn synchronously (van Oppen et al., 2001), and whether this



✓ Fig. 1 Bayesian 50% majority consensus tree ( – ln L = 9280.8). Numbers above nodes represent bootstrap values from NJ/MP analysis, and numbers below nodes refer to ML bootstrap proportions/BL posterior probabilities. Dashes represent nodes with bootstrap (or posterior probability) support lower than 50% or represent nodes not existed. Some populations of the same species massed on different clades with high confidences, thus values are not shown due to space restriction. Clarotes laticeps, Liobagrus anguillicauda and Silurus meridionalis were used as outgroups, and the tree was rooted with Silurus meridionalis. Figures on the right are shown to illustrate, respectively: (a) thin and delicate maxillary barbels that do not extend beyond proximal origin of the pectoral fins; (b) pectoral spines that are smooth at their anterior edges; (c) stout elongate maxillary barbels that extend beyond the proximal origin of the pectoral fins; (d) the presence of serrations on the anterior edge of the pectoral spines [figures (b) and (d) are modified from Watanabe & Uyeno, 1999]

occurs among bagrids still needs further confirmation. It should also be taken with caution that we examine only one mitochondrial marker to explore the phylogeny, for a better resolution, it will be most meaningful to add more markers, especially the nuclear genes.

The bagrid catfishes are among those siluriform groups of an older fossil record, with unambiguous fossil reports from the Eocene (Ng, 2003). Therefore, bagrids had most of the Cenozoic era to diverge (Ng, 2003). However, for East Asian group, a molecular clock calibration (Ku et al., in preparation) suggested that, most of the extant species (all the species in lineage I and lineage II) were resulted from rapid speciation within the past 10 MY. It is thus possible that the Pseudobagrus ussuriensis, Pelteobagrus vachelli and Pelteobagrus *nitidus* samples that sharing the same haplotypes did not accumulate enough base substitutions in such a relatively short time in order to be differentiated. Concerning the unresolved polytomies in the derived clades of the tree in Fig. 1, these may represent cases of explosive speciation (e.g., van Oppen et al., 2001). Thus, the generic polyphyly could probably be explained by the explosive speciation and coalescent hypotheses.

Diagnostic value of morphological traits

As referred above and summarized in Table 1, previous studies on the bagrid intrarelationships

have given different results, which might reflect the use of inappropriate sampling of characters and/or taxa. In China, the original (non-cladistic) diagnoses of bagrid genera were based on length of the adipose fin, general shape of the head and the caudal fin (Chu et al., 1999). However, parts of these characters seem to be rather plesiomorphic according to their mapping in the phylogenetic tree (Fig. 1). For example, a deeply forked caudal fin is not a common character in all Pelteobagrus species analyzed. Pelteobagrus eupogon presents a moderate forked caudal fin with rounded lobes. Such morphological traits seem effectively to constitute poor phylogenetic indicators, since, as explained above, the genera Pseudobagrus, Pelteobagrus and Leiocassis diagnosed by them appear as non-monophyletic (Fig. 1). Thus, the taxonomy of Chinese bagrids should eagerly be the subject of detailed revision.

By contrast, a preliminary analysis of some morphological traits revealed that characters such as the length of the maxillary barbels and the shape of the pectoral spines do fit with the phylogenetic results in Fig. 1. Different states of these characters can in fact be assigned with different monophyletic assemblages in this figure: most of the fishes of lineage I possess thin and delicate barbels not extending beyond the proximal origin of the pectoral fins and only display serrations on the posterior edge of the pectoral spines; fishes of lineage II display stout, elongate barbels that extend over the proximal origin of the pectoral fins and serrations on both the anterior and posterior edges of the pectoral spines (Fig. 1). One exception is Pelteobagrus vachelli of lineage I, which displays smooth anterior edges of the pectoral spines but has thin maxillary barbels extending slightly over the proximal origin of the pectoral fins. But the other fishes in Fig. 1 do follow the general rule described above. This preliminary analysis of some morphological traits thus stresses that a more detailed and extensive revision of bagrid anatomy might effectively reveal useful data to reevaluate the intrarelationships of bagrid catfishes.

Monophyly of the clade including the species previously assigned to the genera *Pseudobagrus, Pelteobagrus and Leiocassis* and taxonomic suggestions

According to Peng et al. (2002), genus *Hemibagrus* occupies a basal position within East Asian bagrid catfishes. Our results support a rather basal position of *Hemibagrus macropterus*, *Hemibagrus guttatus* and *Hemibagrus nemurus* within East Asian bagrids, but the latter species appears more closely related to *Mystus* sp. than to the other two species analyzed (Fig. 1). It will thus be interesting to examine, in future works, if some of the other 37 species currently assigned to the *Hemibagrus* also appear more closely related to *Mystus* and/or other bagrid genus than to the remaining species of this genus.

Mo (1991) stated that certain Chinese species of genus Leiocassis (L. longirostris, L. longibarbus, L. crassilabris, L. tenuifurcatus, L. virgatus and L. argentivittatus) should in fact be assigned to genera Pseudobagrus and/or Pelteobagrus. According to Kottelat (pers. comm), the only 'true' Leiocassis species are those restricted to Indonesia.

Mo (1991) supported the monophyly of a clade [(Coreobagrus, Pseudobagrus) Pelteobagrus]. Watatanabe & Uyeno (1999) pointed out that Coreobagrus is not a valid genus but rather a junior synonym of Pseudobagrus. As can be seen in Fig. 1, according to our phylogenetic results, the genera Pseudobagrus and Pelteobagrus, as currently defined, appear as clearly non-monophyletic. Following the tree shown in Fig. 1, we suggest the synonymization of Pelteobagrus Bleeker 1864 with Pseudobagrus Bleeker 1860 (cf. Hardman, 2005) to eliminate the generic nonmonophyly. Thus, in our view, all the Chinese species currently assigned to genera Leiocassis and Pelteobagrus should in fact be considered members of the genus Pseudobagrus.

In conclusion, our present study has focused only on the East Asian bagrid catfishes. Based on mtDNA cytochrome *b* sequence data, the currently recognized *Pseudobagrus*, *Pelteobagrus* and *Leiocassis* are found to be polyphyly. To eliminate the generic nonmonophyly, we suggest all the Chinese species currently assigned to the genera *Pelteobagrus* and *Leiocassis* should in fact be considered members of the *Pseudobagrus*. To further test the monophyly of genus *Hemibagrus*, a number of *Hemibagrus* species in the South and Southeast Asia should be included in a more comprehensive analysis.

Acknowledgements We thank X. Guo, L. Yang, and Y. Ding for assistance in collecting specimens. We are grateful to M. Kottelat for revising the early version of this manuscript. We also extend our gratitude to the anonymous reviewers and the associated editor for helpful suggestions. This work was funded and supported by grants from National Science Fund for Distinguished Young Scholars (32005008) and the Knowledge Innovation Project of the Chinese Academy of Sciences (KSCX2-SW-101B) to S.H. The work was also partially supported by the All Catfish Species Inventory (NSF DEB-0315963).

### References

- Avise, J. C., 1994. Molecular Markers, Natural History and Evolution. Chapman & Hall, New York.
- Chu, X., B. Zhen & D. Dai, 1999. Fauna Sinica, Class Teleostei, Siluriformes. Science Press, Beijing (in Chinese).
- Dai, F., 1998. Studies on isozymes, skeleton characters of eight bagrid catfishes and comments on phylogenetic relationship (Siluriformes: Bagridae). Acta Zootaxonomica Sinica 23: 432–439 (in Chinese).
- Diogo, R., 2003. Higher-level phylogeny of Siluriformes: an overview. In Kapoor, B. G., G. Arratia, M. Chardon & R. Diogo (eds), Catfishes. Science Publishers, Enfield, 353–384.
- Diogo, R., 2004. Morphological evolution, aptations, homoplasies, constraints, and evolutionary trends: catfishes as a case study on general phylogeny and macroevolution. Science Publishers, Enfield, USA.
- Diogo, R., P. Vandewalle & M. Chardon, 1999. Morphological description of the cephalic region of *Bagrus docmak*, with a reflection on Bagridae (Teleostei: Siluriformes) autapomorphies. Netherlands Journal of Zoology 49: 207–232.
- Galtier, N., M. Gouy & C. Gautier, 1996. SEAVIEW and PHYLOWIN: Two graphic tools for sequence alignment and molecular phylogeny. Computer Applications in Biosciences 12: 543–548.
- Goropashnaya, A. V., B. Fedorov, B. Seifert & P. Pamilos, 2004a. Recent speciation in the *Formica rufa* group ants (Hymenoptera, Formicidae): inference from mitochondrial DNA phylogeny. Molecular Phylogenetics and Evolution 32: 198–206.
- Goropashnaya, A. V., B. Fedorov, B. Seifert & P. Pamilos, 2004b. Limited phylogeographical structure across Eurasia in two red wood ant species *Formica pratensis* and *F. lugubris* (Hymenoptera, Formicidae). Molecular Ecology 13: 1849–1858.

- Guindon, S & O. Gascuel, 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 696–704.
- Hardman, M., 2005. The phylogenetic relationships among non-diplomystid catfishes as inferred from mitochondrial cytochrome b sequences; the search for the ictalurid sister taxon (Otophysi: Siluriformes). Molecular Phylogenetics and Evolution 37: 700–720.
- Jayaram, K. C., 1968. Contributions to the study of bagrid fishes (Siluroidae: Bagridae) III. A systematic account of the Japanese, Chinese, Malayan and Indonesian genera. Treubia 27: 287–386.
- Kishino, H. & M. Hasegawa, 1989. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. Journal of Molecular Evolution 29: 170–179.
- Kumar, S., K. Tamura, I. B. Jakobsen & M. Nei, 2001. MEGA2: molecular evolution genetics analysis software. Bioinformatics 17: 1244–1245.
- van Oppen, M. J. H., J. M. Brenda., B. L. Willis & D. J. Miller, 2001. The evolutionary history of the Corals genus *Acropora* (Scleractinia, Cnidaria) based on a mitochondrial and a nuclear marker: reticulation, incomplete lineage sorting, or morphological convergence? Molecular Biology and Evolution 18: 1315–1329.
- Maeda, H., K. Watanabe & Y. Taki, 1994. Genetic relationships of the Japanese bagrid catfishes. Journal of the Tokyo University Fisheries 81: 111–121.
- Mo, T., 1991. Anatomy, relationships and systematics of the Bagridae (Teleostei: Siluroidei), with a hypothesis of Siluroid phylogeny. Theses Zoologicae 17, Koenigstein: Koeltz scientific Books.
- Ng, H. H., 2003. Phylogeny and systematics of Bagridae. In Kapoor B.G., G. Arratia, M. Chardon & R. Diogo (eds), Catfishes. Science Publishers, Enfield, 439–463.
- Okazaki, T., Sang-Rin Jeon, M. Watanabe & T. Kitagawa, 1999. Genetic relationships of Japanese and Korean bagrid catfishes inferred from mitochondrial DNA analysis. Zoological Science 16: 363–373.
- Peng, Z., S. He & Y. Zhang, 2002. Mitochondrial cytochrome b sequence variations and phylogeny of East Asian bagrid catfishes. Progress in Natural Science 12: 421–425.
- Peng, Z., Y. Zhang., S. He & Y. Chen, 2005. Phylogeny of Chinese catfishes inferred from mitochondrial cytochrome b sequence. Acta Genetica Sinica 32: 145–154.

- ics 14: 817–818.
  Razafimandimbison, S. G., J. Moog, H. Lantz, U. Maschwitz & B. Bremer, 2005. Re-assessment of monophyly, evolution of myrmecophytism, and rapid radiation in *Neonauclea s.s.* (Rubiaceae). Molecular Phylogenetics and Evolution 34: 334–354.
- Regan, C. T., 1911. The classification of teleostean fishes of the order Ostariophysi α. Siluroidae. Annals and Magazine of Natural History, London 8: 553–577.
- Ronquist, F & J. P. Huelsenbeck, 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.
- Swofford, D. L., 2002. PAUP\*: Phylogenetic Analysis Using Parsimony (\* and other methods). Version 4. Sinauer, Sunderland, Massachusetts.
- Templeton, A. R., 1983. Phylogenetic inference from restriction endonucleotide cleavage site maps with particular reference to the evolution of humans and apes. Evolution 37: 221–244.
- Teugels, G. G., 2003. State of the art of recent siluriform systematics. In Kapoor, B. G., G. Arratia, M. Chardon & R. Diogo (eds), Catfishes. Science Publishers, Enfield, 317–352.
- Thompson, J. D., T. J. Gibson & F. Plewnink, 1997. The Clustal X windows interface: flexible strategies for multiple sequences alignment aided by quality analysis tools. Nucleic Acids Research 25: 4876–4882.
- Tilak, R., 1965. The osteocranium and the Weberian apparatus of the fishes of the family Bagridae (Pisces: Siluroidei). Morphologisches Jahrbuch 107: 415–443.
- Watanabe, K. & T. Uyeno, 1999. Fossil bagrid catfishes from Japan and their zoogeography, with description of a new species, *Pseudobagrus ikiensis*. Ichthyological Research 46: 397–412.
- Xiao, W., Y. Zhang & H. Liu, 2001. Molecular systematics of Xenocyprinae (Teleostei: Cyprinidae): taxonomy, biogeography and coevolution of a special group restricted in East Asia. Molecular Phylogenetics and Evolution 28: 473–484.
- Yang, Z., 1994. Estimating the pattern of nucleotide substitution. Journal of Molecular Evolution 39: 105–111.
- Zwickl, D. J. & D. H. Hillis, 2002. Increased taxon sampling greatly reduces phylogenetic error. Systematic Biology 51: 588–598.

Springer