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ABSTRACT

William K. Gregory was one of the most influential authors defending the existence of an evolutionary trend
in vertebrates from a higher degree of polyisomerism (more polyisomeric or ‘serial’ anatomical structures
arranged along any body axis) to cases of anisomerism (specialization or loss of at least some original
polyisomeric structures). Anisomerism was the subject of much interest during the 19th and the beginning
of the 20th centuries, particularly due to the influence of the Romantic German School and the notion of
‘primitive archetype’ and because it was conceptually linked to other crucial biological issues (e.g. complexity,
scala naturae, progress, modularity or phenotypic integration). However, discussions on anisomerism and
related issues (e.g. Williston’s law) have been almost exclusively based on hard tissues. Here we provide the first
detailed empirical test, and discussion, of anisomerism based on quantitative data obtained from phylogenetic
and comparative analyses of the head and forelimb muscles of gnathostomes. Our results strongly support the
existence of such a trend in both forelimb and head musculature. For instance, the last common ancestor
(LCA) of extant tetrapods likely had 38 polyisomeric muscles (PMs) out of a total of 70 forelimb muscles
(i.e. 54%), whereas in the LCAs of extant amniotes and of mammals these numbers were 38/73 (52%) and
21/67 (31%), and in humans are 11/59 (19%). Interestingly, the number of PMs that became specialized
during the forelimb evolutionary transition from the LCA of extant tetrapods to humans (13) is very similar
to the number of PMs that became lost (14), indicating that both specialization and loss contributed equally
to the trend towards anisomerism. By contrast, during the evolution of the head musculature from the LCA of
gnathostomes to humans a total of 27 PMs were lost whereas only one muscle became specialized. Importantly,
the evolutionary trend towards anisomerism is not related to a general trend leading to the presence of fewer
muscles in derived taxa, because for instance humans have more head muscles in total, but many less head
polyisomeric muscles than early gnathostomes and extant fish such as sharks, and than early tetrapods and
amphibians such as salamanders. This is because new muscles have also been acquired during gnathostome
evolution (e.g. facial muscles of mammals). Interestingly, many new PMs have also been acquired during head
evolution (but subsequently lost during the transitions towards humans), whereas only a few new PMs were
acquired during forelimb evolution. Our comparisons and review of the literature indicate that there is also
a trend towards anisomerism during development, thus providing a further example of a parallel between
ontogeny and phylogeny, e.g. some forelimb PMs (e.g. contrahentes, intermetacarpales) become specialized
or lost (re-absorbed) during human ontogeny and some head PMs (e.g. constrictores branchiales) become
lost during salamander ontogeny. This review will inform future discussions on modularity, complexity, body
plans, phenotypic integration and macroevolution, which should ideally include soft tissues and the use of new
tools (e.g. anatomical networks) in order to provide a broader and more integrative understanding of these
relevant subjects.
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I. INTRODUCTION

The American zoologist William K. Gregory was one of
the most influential authors defending the existence
of an evolutionary trend in vertebrates from a higher
degree of polyisomerism (i.e. more polyisomeric or
‘serial’ anatomical parts arranged along any of the body
axes) to cases of anisomerism (i.e. specialization or loss
of at least some of the original polyisomeric structures).
One of the examples provided by Gregory (e.g. 1929,
1934) in support of this idea concerns the presence of
numerous similar teeth serially arranged in the jaws of
early fossil gnathostomes, in contrast to the presence
of few and highly specialized teeth in phylogenetically
derived taxa such as mammals (e.g. incisors, molars,
premolars, canines).

Evolutionary trends towards anisomerism were the
subject of much interest at the end of the 19th century
and the beginning of the 20th century, because they
were conceptually linked to some of the most central
subjects in the fields of evolutionary, comparative and
developmental biology, as for example, the ideas of com-
plexity, scala naturae, progress, modularity, body plans
or phenotypic integration (e.g. Cope, 1871; Williston,
1914; Goodrich, 1930; Edgeworth, 1935). For instance,
under the Naturphilosophie paradigm and the notion of
‘primitive archetype’ followed by some authors, such as
Goethe (1790), Oken (1843), and later by Gegenbaur
(1878) and Goodrich (1930), the head of vertebrates
was seen as a continuation of the segmented trunk, the
branchial arches being serially homologous to ribs, and
the cranial nerves with spinal nerves (for a review, see
Russell, 1916; Richards, 1992, 2002). At present, it is
almost consensual that the vertebrate neurocranium is
not a continuation of the segmented trunk and that the
only cases of serial homology within the skeletal struc-
tures of the head (i.e. polyisomerism sensu Gregory)
would be represented by the branchial arches, particu-
larly the hyoid and more posterior arches (for a recent
review see Kuratani et al., 2013). For a recent review of
the ideas of complexity, scala naturae and progress and
their historical context, as well as of the terms ‘phylo-
genetically basal versus derived taxa’ and ‘anatomically
basal versus derived animals’, see Diogo, Ziermann &
Linde-Medina (in press).

Discussions on anisomerism faded out following the
decline of comparative morphology in the second half
of the 20th century, although some authors have contin-
ued to investigate the existence of evolutionary trends
towards anisomerism and related issues, such as Willis-
ton’s law (i.e. a general trend towards the reduction of
the number of skull bones within vertebrate evolution)
(e.g. Assis, 2009; Diogo & Wood, 2012a; Esteve-Altava
et al,, 2013). For instance, recently the idea of ani-
somerism and, particularly, Williston’s law, have been
reassessed in the context of network theory. Conceptu-
alizing the skull as a structural network where the bones
and the suture joints of the skull represent nodes and
links, respectively, some well-established network statis-
tics can be calculated to investigate the existence of
evolutionary trends in skull organization (Esteve-Altava
et al., 2013). Under this framework, Esteve-Altava et al.
(2013) corroborated the existence of an evolutionary
trend towards the reduction of skull bone number in
mammals but suggested that this reduction was actu-
ally accompanied by a trend towards a more com-
plex organization of the skull. However, some authors
have contradicted both Williston’s law and the exis-
tence of a general trend towards anisomerism. For
example, according to Minelli (2009) the plesiomor-
phic condition for centipedes is to have a reduced
rather than a high number of body segments, as illus-
trated by the house centipede (family Scutigeridae)
with 15 pairs of legs, in contrast to derived geophilo-
morph centipedes, which can have up to 191 pairs
of legs.

Some authors have suggested that the occurrence
of evolutionary trends leading to anisomerism would
have an adaptative basis. For example, according to
Galis (1996) a structural decoupling among serial
homologous parts (i.e. modularity) would release them
from developmental or functional constraints, increas-
ing their capability to evolve morphological adapta-
tions. This structural uncoupling would facilitate the
diversification and specialization of polyisomeric struc-
tures, leading to anisomerism. Thus, mutations that
increased the degree of modularity of originally poly-
isomeric structures could be selectively advantageous
for the species bearing them. An example of striking
morphological diversity and speciosity with a structural
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decoupling is provided by cichlid fishes (Galis, 1996),
in which one of the branchial arches became mod-
ified into a highly specialized pharyngeal jaw appa-
ratus. Developmental studies have shown that alter-
ations in the expression of key regulatory genes might
for instance underlie the evolutionary transformation
from polyisomerism to anisomerism in the vertebrate
limb (e.g. Drossopoulou et al., 2000; Litingtung et al.,
2002; Lettice et al., 2008; Towers et al., 2008; Zhu et al.,
2008; Sheth et al., 2012). Recently, it has been reported
that alterations in the dose of distal Hox genes in the
mouse limb bud produce a series of polydactylous limbs,
i.e. limbs with supernumerary digits, and thus, with a
higher degree of polyisomerism, some of them resem-
bling the plesiomorphic (polyisomeric) condition of
fish fins (Sheth et al., 2012). Importantly, some studies
have pointed out the relevance of taking into account
the developmental processes of digit formation, and
not only specific genetic mutations, for understanding
the evolutionary alterations in digit number or the fre-
quency distribution of polydactylous variants in popu-
lations (e.g. Sheth et al,, 2012; Lange, Nemeschkal &
Muller, 2014).

In an influential but controversial paper, Schwartz
(1999) proposed a specific hypothesis for the occur-
rence of a higher degree of polyisomerism in the ple-
siomorphic members of a clade. According to him,
the recessive alleles of homeobox or other regulatory
genes can spread silently in a population by heterozy-
gosis. If there is a sufficient number of heterozygotes
for the recessive mutation, their random mating can
produce offspring homozygous for this specific allele.
The spread of the new recessive allele could there-
fore be particularly quick and effective if the pop-
ulation is small. In accordance with this hypothesis,
Schwartz (1999) cites an empirical study where a spon-
taneous mutation of the Hox-13 gene resulted in the
expansion of the polyalanine stretch and synpolydactyly
in a laboratory colony of mice (Johnson et al., 1998).
Also according to Schwartz (1999), additional examples
from the fossil record demonstrate not only that novel
features can appear abruptly, but also that they are
usually more fully expressed than in derived forms:
e.g. the first tetrapods had more digits than any sub-
sequent extant tetrapod (see also the recent review
of Pierce, Hutchinson & Clack, 2013). More recently,
it has been reported that some cases of polydactyly
are the result of few point mutations in a conserved
non-coding regulatory element of sonic hedgehog (Shh)
gene (Lettice et al,, 2008), supporting the idea that
evolutionary transformations leading to an increase
of the number of polyisomeric structures can in fact
occur suddenly in a geological time scale, rather than
gradually.

As can be seen from the above, the study of issues
related to polyisomerism versus anisomerism has been
almost exclusively based on hard tissues. Some previous

comparative myological studies have discussed these
issues, but those studies were based on qualitative
comparisons of muscles that did not include explicit
phylogenetic or quantitative analyses (see review of
Diogo & Abdala, 2010). Here, we explore the existence
of an evolutionary trend towards anisomerism based
on the results of cladistic and quantitative analyses of
the musculature of the head and the forelimb of all
the major vertebrate clades (e.g. Diogo, 2007; Diogo &
Wood, 2011, 20124,b, 2013). These myological phyloge-
netic works are part of a long-term project to investi-
gate the comparative anatomy, homologies, evolution,
development and phylogeny of the striated muscles of
all of the major groups of vertebrates (e.g. Diogo, 2007;
Diogo & Abdala, 2007, 2010; Diogo et al., 2008, 20094,b;
Diogo & Tanaka, 2012, 2014; Diogo & Ziermann, 2014).
Here we test the anisomerism hypothesis by: (i) com-
paring the estimated number of polyisomeric muscles
(PMs) in the last common ancestor (LCA) of verte-
brate clades and their closely related extant taxa; ()
calculating the number of lost and specialized muscles
between the LCAs of the different vertebrate clades
and their extant taxa; (#7) calculating the total num-
ber of muscles of the head and of the forelimb (i.e.
including both polyisomeric and non-polyisomeric mus-
cles) for each extant taxon in order to explore whether
the evolution of anisomerism is correlated to a general
reduction in the number of muscles in different parts of
the body.

For the identification of PMs in each anatomical
region, we followed the methodology detailed in Diogo
& Abdala (2010) and Diogo et al. (2013). For instance,
regarding the human hand, three groups of PMs have
been identified (lumbricales, interossei palmares and
interossei dorsales) because the muscles included in
each of these groups have a similar topology, attach-
ments and function. For instance, the lumbricales 1, 2,
3 and 4 run respectively from the tendons of the flexor
digitorum longus to the proximal phalanx and exten-
sor expansions of digits 2, 3, 4 and 5, and all of them
flex the proximal phalanges and extend the middle and
distal phalanges of these digits (Fig. 1). It should be
noted that we have recently provided an extensive dis-
cussion on serial homology (Diogo et al., 2013), in par-
ticular between the forelimb and hindlimb (and specif-
ically its refutation), and therefore, in the present work
we will not repeat our discussions on whether the fore-
limb PMs (e.g. the lumbricales of the human hand)
are, or are not, truly serial homologues to the hindlimb
PMs (e.g. the lumbricales of the human foot). It should
also be noted that the muscles discussed in the sections
below (head and forelimb) were those included in our
previous cladistic analyses, and therefore are those for
which we have detailed information about the con-
dition of the LCA for all the major groups listed in
Tables 1 and 2.

Biological Reviews (2014) 000—000 © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society



4 R. Diogo and others

Palmaris brevis.

Abductor digiti minimi
Opponens pollicis

Abductor pollicis brevis/
Abductor hallucis

Interossei
palmares

Flexor pollicis brevis/
Flexor hallucis brevis

dorsales

Interossei

Lumbricales

Flexor digitorum superficialis/
Flexor digitorum brevis

Flexor digitorum profundus/
Flexor digitorum longus

Flexor brevis profundus 2
Adductor pollicis
Flexor digiti minimi brevis/
Flexor digiti minimi
Flexor pollicis longus/
\ Flexor hallucis longus

Digit 1

Fig. 1. Superficial musculature of the hand seen in palmar view (on the left) and of the foot seen in plantar view (on
the right), showing the lumbricales (in red; both the hand and the foot have four lumbricales), which are one of the few
groups of polyisomeric muscles found in the forelimb and hindlimb of modern humans (modified from Gray & Carter,

1858).

II. TESTING THE TREND TOWARDS
ANISOMERISM: DATA FROM FORELIMB
MUSCULATURE

As can be seen in Table 1, regarding the forelimb mus-
cles, the LCA of all extant tetrapods very likely had 70
muscles in total (based on the comparative data and
phylogenetic reconstructions provided by Diogo, 2007;
Diogo & Abdala, 2010; Diogo & Tanaka, 2012; Diogo
et al., 2013). Of those 70 muscles, 38 (54%) are PMs.
This percentage of PMs is particularly remarkable if we
take into account that all the 38 PMs are only localized
in the hand (flexores breves superficiales and profundi,
lumbricales, contrahentes, intermetacarpales and dor-
sometacarpales) and the distal portion of the exten-
sor compartment of the forearm (extensores digitorum
breves) (see Fig. 2). In fact, only one intrinsic hand
muscle, the abductor digiti minimi, was not a PM. The
first tetrapods with digits (e.g. Acanthostega) which are
phylogenetically more plesiomorphic than the LCA of
extant tetrapods (amniotes plus amphibians) had more
than five digits (for a review see Pierce et al,, 2013).
Therefore, it is very likely that these first tetrapods had
an even higher percentage of PMs, assuming that they

already had the different groups of PM found in the
LCA of extant tetrapods. Unfortunately, the muscula-
ture of these first tetrapods with digits is still poorly
known and this hypothesis cannot be tested at present;
we are currently undertaking a project to reconstruct
in detail the forelimb muscles of taxa such as Acan-
thostega (J. Molnar, R. Diogo, S. E. Pierce, J. Hutchinson,
P. Albergh & P. Johnston, in preparation).

In extant salamanders such as the axolotl (Ambystoma
mexicanum), 24 out of 51 forelimb muscles are PMs
(47%) (Table 1). These numbers support a trend
towards anisomerism from the LCA of tetrapods to the
axolotl, because this urodele not only lost the PMs asso-
ciated with digit 5 (which is absent in this species)
(see Fig. 2), but also some of the PMs associated with
the remaining digits (i.e. the lumbricales and the dor-
sometacarpales). Interestingly, during the evolutionary
transition from the LCA of extant tetrapods to the
axolotl, two new PMs were acquired, the flexores digi-
torum minimi (this group of muscles is also present in
anurans, so it was very likely present in the LCA of anu-
rans and urodeles, see, e.g. Diogo & Ziermann, 2014).
Remarkably, during the transitions from the LCA of
extant tetrapods to the LCA of extant amniotes no PM
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Fig. 2. Superficial musculature of the distal portion of the urodele Taricha torosa forelimb (on the left) and hindlimb
(on the right) in dorsal view, showing the intermetacarpales (in orange; the hand and foot have, respectively, three
and four intermetacarpales) and the extensores digitorum breves (in dark blue; the hand and foot have, respectively,
three and four extensores digitorum breves), which are among the various groups of polyisomeric muscles found in the
forelimb and hindlimb. The urodele Taricha torosa differs little from Ambystoma mexicanum in its limb muscles [modified
from Walthall & Ashley-Ross (2006); N.B., as this is a dorsal view whereas Fig. 1 is a palmar/plantar (i.e. ventral) view,
there is no correspondence between the colours used in the two figures, i.e. they do not represent homologous structures

between urodeles and modern humans].

was lost or gained (Table 2). However the percentage
of PMs/total number of muscles in reptiles such as the
lizard Timon lepidus (56%) is actually higher than that
estimated for the LCA of extant tetrapods (54%). This
is because various non-PMs were lost during the transi-
tions from the LCA of extant amniotes to Timon lepidus,
whereas only one PM was lost during these transitions;
the total number of PMs in Timon lepidus is however still
lower than those found in the LCA of extant tetrapods
and amniotes.

A particularly notable change towards anisomerism
occurred during the transition from the LCA of extant
amniotes to the LCA of extant mammals where 7 PMs
were lost and 10 PMs became specialized, i.e. fused to
other muscles (e.g. the flexores breves superficiales)
or anatomically different from the remaining muscles
of their group (e.g. the adductor pollicis of mammals)
results from a specialization of the contrahens of digit 1
and it is anatomically very different, and broader, than
the contrahentes of the other digits (Fig. 1; Table 1).
The trend towards anisomerism is also seen in the tran-
sitions from the LCA of mammals to the monotreme
platypus (Ornithorhynchus anatinus), in which eight fore-
limb PMs were lost (Table 1), and to the LCA of
extant primates, in which two forelimb PMs became

specialized (i.e. the flexor brevis profundus became
divided into a flexor pollicis brevis and an opponens
pollicis, and the flexor brevis profundus became divided
into a flexor digiti minimi brevis and an opponens digiti
minimi: Table 1).

The forelimb transition from the LCA of extant pri-
mates to the strepsirrhine Lemur catta represents an
exception to the general trend of the forelimb muscula-
ture towards anisomerism: four new PMs were acquired
(interossei accessorii, which seem to represent a synapo-
morphy of strepsirrhines: e.g. Diogo & Wood, 2012a)
whereas only one PM was lost (one contrahens) increas-
ing the proportion of PMs. That is, both the number of
PMs (22) and the percentage of PM/total number of
muscles (31%) are greater in this strepsirrhine than in
the LCA of primates (19/68 or 28%). Butin the context
of the present work this is clearly one of those ‘excep-
tions that confirm the rule’, because if we analyse the
forelimb transitions from the LCA of extant primates
to humans (seven PMs lost and one PM specialized), or
from the LCA of extant tetrapods to humans (14 PMs
lost and 13 PMs specialized, resulting in 27 fewer PMs
in total), it is clear that there is an overall trend towards
anisomerism (Table 1). The fact that the number of PMs
that became specialized during the transition from the

Biological Reviews (2014) 000—000 © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society



Specialize or risk disappearance — anisomerism in gnathostomes 13

LCA of extant tetrapods to humans (13) is very simi-
lar to the number of PMs that became lost during this
transition (14) indicates that, in the case of the forelimb
musculature, both muscle specialization and muscle loss
contributed equally to the trend towards anisomerism.
One issue that is often not discussed in the literature
about anisomerism concerns the parallel between phy-
logeny and ontogeny. However, our comparisons and
review of the literature allow us to address this sub-
ject in the context of the evolution and development
of the forelimb of tetrapods. In Ontogeny and Phylogeny
Gould (1977) argues that although Haeckel’s hypoth-
esis that the ontogeny of one organism recapitulates
the adult stages of its ancestors (i.e. recapitulation)
has been refuted, researchers often use this idea as a
‘straw-man’ to deny that there is often a parallel between
ontogeny and phylogeny. According to Gould (1977)
such a parallel exists and is probably driven more by
phylogenetic/ontogenetic constraints than by adaptive
plasticity. According to data on the development of the
human forelimb provided by authors such as Cihak
(1972) such a parallel does exist, at least regarding some
muscles. For instance, as happened during the evolu-
tionary transitions leading to humans (Table 1), dur-
ing human ontogeny the intermetacarpales also become
fused with some flexores breves profundi to form the
dorsal interossei, and the contrahentes become special-
ized (the one to digit 1) or lost (i.e. reabsorbed; the
ones to the other digits) (Fig. 3; Cihak, 1972). This is,
of course, not recapitulation in the Haeckelian sense:
the contrahentes digitorum and the intermetacarpales
of human embryos do not correspond to the muscles
of adult mammals such as chimpanzees or lemurs, but
instead to the muscles of the embryos of these latter
taxa. That is, the developmental pathways that gener-
ate these muscles in the adults of the latter taxa have
not been completely lost in modern humans, even after
several millions of years, probably because these path-
ways are related to those involved in the development of
other structures that are present and functional in mod-
ern human adults (ontogenetic constraints; for further
details, see recent review by Diogo & Wood, 2012b).

III. TESTING THE TREND TOWARDS
ANISOMERISM: DATA FROM HEAD
MUSCULATURE

In general, the data obtained from the study of the evo-
lution of the head musculature from the LCA of extant
gnathostomes to the LCA of extant tetrapods, and par-
ticularly, to the LCA of extant amniotes, also provides
support for a trend towards anisomerism. The percent-
age of PMs for these three LCAs is, respectively, 63% (15
of a total of 24 muscles), 45% (14 of a total of 31 mus-
cles) and 0% (0 of a total of 20 muscles) (Table 2). How-
ever, it should be noted that during the transitions from

Primordia of contrahentes
to digits 3,4 and 5

Primordia of contrahentes nu
to digits 1 and 2
C-R 25mm

Adductor pollicis (derived
from primordium of
« contrahens to digit 1)

Fig. 3. Ontogeny of the contrahentes digitorum in the
hand of a karyotypically normal human embryo showing
how the contrahentes to digits other than digit 1 are
usually lost (reabsorbed) early in development (modified
from Cihak, 1972). Part of the interossei primordia (i.e.
the flexores breves profundi layer) are shown between
the metacarpals. r, p, u: radial, proximal and ulnar parts,
respectively, of contrahentes layer; nu: ulnar nerve; ad:
adductor pollicis; cpl: contrahens plate; I-V: metacarpals
I-V; C-R: crown—rump length of the embryos.

the LCA of gnathostomes to extant chondrichthyans
such as sharks (17 PMs), as well as to the LCA of rhi-
pidistians (dipnoans + tetrapods) (20 PMs), there was
actually an increase of the total number of PMs, because
while some PMs were lost, numerous new PMs were
acquired (interarcuales laterales and interpharyngob-
ranchiales in chondrichthyans, and levatores arcuum
branchiarum, transversi ventrales and subarcuales recti
during the transitions to rhipidistians; Table 2). This
clearly contrasts with the evolution of the forelimb mus-
cles, in which only a few new PMs were acquired, and
only in some specific (less inclusive) groups such as the
strepsirrhines or the amphibians (see Section II and
Table 1).

Another major difference between the evolution of
the head and forelimb muscles is that, as explained
above, the number of PMs that became specialized
during the forelimb transitions from the LCA of extant
tetrapods to humans (13) is similar to the number of
PMs that became lost during those transitions (14),
while during the head transitions from the LCA of
gnathostomes to humans a total of 27 PMs were lost
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while only one became specialized (Table 2). That is,
there is much less specialization of specific PMs in
the head, and therefore less diversity and functional
decouplings than in the forelimb.

The study of the head muscles also indicates that
the evolutionary trend towards anisomerism is not
related to the existence of a general trend leading
to a reduction of the number of muscles in derived
taxa. For example, humans have more head muscles
in total (60), but many less polyisomeric head muscles
(0), than early gnathostomes and fish such as sharks
(17PM out of 30 muscles), and than early tetrapods
and amphibians such as salamanders (12 out of 31 mus-
cles). This is because new, non-PMs have also been dif-
ferentiated during evolution (e.g. the facial muscles of
mammals).

Interestingly, as in the case of the forelimb muscles
(see Section II), the study of the head muscles provides
examples of a trend towards anisomerism during devel-
opment and therefore of a parallel between ontogeny
and phylogeny. For instance, in salamanders, some head
PMs (e.g. constrictores branchiales) originate early in
ontogeny but are subsequently lost at later developmen-
tal stages (Edgeworth, 1935), as they were during the
evolutionary history of rhipidistians (Table 2; e.g. Diogo
& Abdala, 2010). As pointed out by Diogo & Wood
(20125) and explained above, such examples of mus-
cles, particularly of PMs, which are lost during devel-
opment are probably related to ontogenetic constraints
(e.g. Gould, 1977, 2002), rather than to adaptive embry-
onic changes.

IV. CONCLUSIONS

(1) The inclusion of soft-tissue-based information in
comparative and phylogenetic investigations strongly
supports the existence of a trend where some of the
original PMs associated with the branchial arches in
the head, and with the digits in the forelimb, became
specialized or lost during the evolution of gnathostomes
and tetrapods, respectively. For instance, the LCA of
extant tetrapods likely had 38 PMs out of the 70 forelimb
muscles (i.e. 54%), whereas the LCA of extant amniotes
and the LCA of mammals had likely 38/73 (52%) and
21/67 (31%), respectively. In humans the percentage of
PMs is reduced to 19% (11/59).

(2) Remarkably, the number of PMs that became spe-
cialized in the forelimb during the transition from the
LCA of extant tetrapods to humans (13) is very close to
the number of PMs that became lost during this transi-
tion (14). This indicates that, in the case of the forelimb,
both muscle specialization and muscle loss contributed
equally to the trend towards anisomerism. This contrasts
with the evolution of the head muscles from the LCA
of gnathostomes to humans, in which a total of 27 PMs
were lost whereas only one muscle became specialized.

R. Diogo and others

These different patterns are at least in part likely related
to the fact that the number of forelimb bones of the LCA
of extant tetrapods was very similar to that of humans,
whereas there was a significant reduction of the num-
ber of cranial bones from the LCA of gnathostomes to
humans (e.g. Diogo, 2007). This reduction is mainly
linked to the dramatic loss of bones of the branchial
arches during the water—land transitions that led to the
origin of tetrapods and then to amniotes; these transi-
tions are the ones where there was a greater loss of PMs
(Table 2).

(3) The evolutionary trend towards anisomerism is not
related to the existence of an evolutionary trend lead-
ing to a reduction in the number of muscles in derived
taxa. For example, humans have more head muscles
in total, but many less PMs than early gnathostomes
and fish such as sharks, and than early tetrapods and
amphibians such as salamanders. This is because new
muscles have also differentiated during the evolution
of the head musculature (e.g. facial muscles of mam-
mals). Interestingly, many new PMs were also acquired
during the evolution of head muscles, but they were sub-
sequently lost during the transitions towards humans.
By contrast, a very reduced number of new PMs were
acquired during forelimb evolution, the few excep-
tions being the interossei accessorii muscles of strepsir-
rhine primates and the flexores digitorum minimi of
amphibians.

(4) In the case of the forelimb musculature, only
during the transition from the LCA of extant primates
to the strepsirrhine Lemur calta did the total number
of PMs increase, representing the sole exception to
a general trend towards anisomerism. Regarding the
head muscles, there are two cases of a trend towards
polyisomerism: from the LCA of extant gnathostomes to
extant chondrichthyans, such as sharks, and to the LCA
of rhipidistians (dipnoans + tetrapods).

(5) Interestingly, trends towards anisomerism are also
observed during muscle development. For example,
during human ontogeny some forelimb PMs (e.g. con-
trahentes, intermetacarpales) become specialized or
lost (re-absorbed). During salamander ontogeny some
head PMs (e.g. constrictores branchiales) are also lost,
representing a further example of a parallel between
ontogeny and phylogeny.

(6) We are currently undertaking muscle reconstruc-
tions of early tetrapods in order to investigate whether
these animals have more forelimb PMs than any extant
tetrapods as predicted by their polydactyly (see Section
IT). One other example of promising lines of future
research to evaluate anisomerism and related issues is
the use of anatomical networks. As explained above, by
using such networks Esteve-Altava et al. (2013) corrobo-
rated the existence of an evolutionary trend towards the
reduction of skull bone number in mammals, but sug-
gested that this reduction was actually accompanied by a
trend towards a more complex organization of the skull.
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Together with B. Esteve-Altava and colleagues, we plan to
investigate if the trends towards anisomerism reported
here are associated with a greater, or a lower, network
organization of the head/forelimb.

(7) These examples of some possible future research
directions emphasize that there are numerous fascinat-
ing subjects within the fields of evolutionary, compar-
ative and developmental biology that can be informed
from myological data. These include the notions/ideas
of complexity, scalae naturae, progress, modularity, inte-
gration and body plans. We hope that this review will
stimulate such discussions and particularly pave the way
for the integration of myological data on those discus-
sions.
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