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Tetrapods evolved from within the lobe-finned fishes around 370 Ma. The evolution of limbs from lobe-fins entailed a major

reorganization of the skeletal and muscular anatomy of appendages in early tetrapods. Concurrently, a degree of similarity

between pectoral and pelvic appendages also evolved. Here, we compared the anatomy of appendages in extant lobe-finned fishes

(Latimeria and Neoceratodus) and anatomically plesiomorphic amphibians (Ambystoma, Salamandra) and amniotes (Sphenodon)

to trace and reconstruct the musculoskeletal changes that took place during the fins-to-limbs transition. We quantified the anatomy

of appendages using network analysis. First, we built network models—in which nodes represent bones and muscles, and links

represent their anatomical connections—and then we measured network parameters related to their anatomical integration,

heterogeneity, and modularity. Our results reveal an evolutionary transition toward less integrated, more modular appendages.

We interpret this transition as a diversification of muscle functions in tetrapods compared to lobe-finned fishes. Limbs and lobe-fins

show also a greater similarity between their pectoral and pelvic appendages than ray-fins do. These findings on extant species

provide a basis for future quantitative and comprehensive reconstructions of the anatomy of limbs in early tetrapod fossils, and a

way to better understand the fins-to-limbs transition.

KEY WORDS: Extant phylogenetic bracketing, pectoral-pelvic similarity, sarcopterygii, serial homology, similarity bottlenecks.

The limbs of tetrapods evolved from the lobe-fins of sarcoptery-

gian fishes around 370 Ma through a series of anatomical inno-

vations (Fig. 1A). Although at first sight the limbs and lobe-fins

of extant species look different, they share some deep similarities

in their anatomical organization—the way in which bones and

muscles are arranged together—that reveal their common origin.

The study of the origin of limbs involves working with uncer-

tain homologies between anatomical structures, reconstructing

soft tissue in transitional fossil taxa, and gathering information

from the few extant taxa close to the fins-to-limbs transition (e.g.,

Molnar et al. 2017). These circumstances present a challenge for

quantitative methods comparing the anatomical organization of

appendages, especially in very disparate forms.

To overcome this problem, here we propose to, and exem-

plify the use of, a systems biology approach to the study of the

fins-to-limbs transition. A systems biology approach to anatomy

focuses on the quantification and comparison of anatomical orga-

nization, which other properties such as integration, modularity,

and functioning depend on (Rasskin-Gutman and Esteve-Altava

2014). The intuitive notion of anatomical organization evokes a

group of parts establishing physical interactions that define the

overall structure and function of a system (Weiss 1971). Here,

we formalized the anatomical organization of fins and limbs us-

ing network models that capture the basic physical relationships

among bones and muscles. Working with network models of the

musculoskeletal anatomy of appendages allows us to directly

1
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Figure 1. Diagram of the evolution of limbs from fins. (A) Major evolutionary innovations leading to the origin of modern limbs. (B)

Alternative hypotheses proposed to describe the pattern of evolution of the pectoral-pelvic similarity (see Text for details). The horizontal

length of each funnel indicates figuratively the relative anatomical disparity between pectoral and pelvic appendages for each group in

the left cladogram.

compare forms with incomplete homologies (Diogo et al.

2015), to integrate skeletal and muscular data (Diogo et al.

2015; Molnar et al. 2017; Santos et al. 2017), and to

quantify patterns of morphological complexity, integration,

and modularity in a manner not available for compara-

tive methods that focus on shape and size (Kerkman et al.

2017; Esteve-Altava 2017a; Murphy et al. 2018).

Anatomical organization has traditionally helped in iden-

tifying homologies among disparate taxa (e.g., Remane 1956;

Jardine 1969). Homologies are generally more straightforward

for the bones and muscles of the girdle, stylopod (arm/thigh),

and zeugopod (forearm/leg), because more proximal regions of

appendages tend to preserve their anatomical organization across

species more often (Diogo and Abdala 2010). One example is the

homology between the two most proximal mesomeres and the

first radial of lobe-fins and the humerus, radius, and ulna of tetra-

pod forelimbs, respectively (Coates et al. 2002). Another example

is the homology between the adductor profundus muscle of lobe-

fins and the puboischiofemoralis internus muscle of limbs (Diogo

et al. 2016). In contrast, homologies between more distal regions

of appendages are far more controversial, because phylogeneti-

cally distant species barely share their anatomical organization

in these regions, if at all. For example, there is still debate on

whether tetrapod autopod (hand/foot) are homologous to any fin

structure or if they evolved de novo (Sordino et al. 1995; Johanson

et al. 2007; Woltering and Duboule 2010; Nakamura et al. 2016).

Furthermore, the same uncertainty applies to the origin of autopod

intrinsic muscles (Diogo et al. 2016). Uncertainties in homolo-

gies between lobe-fins and limbs pose a problem to quantitative

comparative analyses of their anatomical organization and mor-

phology, limiting such comparisons to a few anatomical elements

or to general developmental patterns.

Bones and muscles are equally important in measuring the

anatomical organization of appendages and reconstructing the

evolution of limbs from lobe-fins. However, most studies on

the origin and evolution of limbs focus almost exclusively on

the appendicular skeleton. Because skeletons fossilize more eas-

ily than soft tissues, they provide direct evidence of the evolution

of appendages. For example, from fossils of early Devonian Sar-

copterygii we know that tetrapodomorphs already had elbows

and knees, and autopods with digits, but that they lacked radi-

als (e.g., Coates and Clack 1990; Coates et al. 2002; Ahlberg

2011). In contrast, we must infer the presence of specific muscles

and their attachments in fossil taxa through the scars they left on

bones and through phylogenetic inference methods, such as ex-

tant phylogenetic bracketing (Witmer 1995). Thus, we rely on the

musculoskeletal anatomy of extant species, such as lobe-finned

fishes and amphibians (e.g., Boisvert et al. 2013; Diogo et al.

2016; Miyake et al. 2016), to bracket the fins-to-limbs transition

and to infer transitional morphologies (Molnar et al. 2017). Like-

wise, we rely on extant species to understand how the anatomical

organization of appendages has evolved, and how pectoral-pelvic

similarity changed before and after the fins-to-limbs transition.

Furthermore, comparative studies must deal with limitations in the

number of specimens available that come from studying scarce

fossil materials or rare extant species. These challenges hinder

quantitative morphological analysis of important evolutionary

events such as the fins-to-limbs transition.
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A question that often emerges when studying the origin and

evolution of limbs is the apparent similarity in anatomical orga-

nization between pectoral and pelvic appendages. Richard Owen

labeled pectoral and pelvic appendages as serially homologous,

precisely because they shared a similar skeletal anatomy, albeit

having different shapes and functions (Owen 1849). Modern evo-

lutionary theory reinterpreted serial homologs as structures de-

rived from evolutionary changes of repeated identical parts in a

last common ancestor. The concept of “deep homology,” a com-

mon developmental-genetic toolkit regulating growth and differ-

entiation of different body parts across distantly related animals

(Wagner 1989; Shubin et al. 1997), helped cement the idea that

pectoral and pelvic appendages are anatomically similar because

pelvic fins evolved by a duplication and redeployment of the same

genetic information directing the development of pectoral fins

(e.g., Ruvinsky and Gibson-Brown 2000; Young et al. 2005; Ab-

basi 2011). However, studies in paleontology, comparative muscle

anatomy, and development disagree with the conclusion that pec-

toral and pelvic appendages are serially homologous in a strict

modern sense. For example, the fossil record of osteostracans

has been interpreted to show that pelvic fins evolved after pec-

toral fins did, as originally distinct appendages (e.g., pelvic fins

lacked a girdle and mineralized radials); and later in evolution

pectoral and pelvic fins became more similar (Coates and Cohn

1998, 1999; Diogo et al. 2013; Miyashita and Diogo 2016; but

see Wilson et al. 2007 for an alternative explanation due to lack

of preservation). It is thought that the first fishes having both

pectoral and pelvic fins had, mainly, only adductor and abductor

muscle masses, while tetrapods can have up to more than 50 mus-

cles in the anterior and posterior limbs. Because most muscles

of the zeugopod and autopod are topologically similar in both

limbs, it was inferred that topologically similar muscles evolved

independently in the fore- and hindlimbs (i.e., derived topolog-

ical similarity) (Diogo and Molnar 2014; Diogo and Ziermann

2015; Diogo et al. 2016). Finally, recent studies on genetic reg-

ulatory networks have revealed also clear differences in patterns

of gene expression between the pectoral and pelvic appendages

of tetrapods (Sears et al. 2015). Together, these studies expand

a debate on whether pectoral-pelvic similarity evolved by serial

homology, by parallelism related to “deep homology,” or by con-

vergent evolution.

Linked to the idea of serial homology, the more traditional

hypothesis states that pectoral and pelvic appendages originated as

mostly identical copies that gradually diversified in form and spe-

cialized in function (Fig. 1B left funnel) (reviewed in Diogo et al.

2013). Contrary to this hypothesis, various studies have proposed

the presence of derived bottlenecks in pectoral-pelvic similarity

within gnathostome evolution. A “similarity bottleneck” is a rel-

atively high degree of similarity between pectoral and pelvic ap-

pendages in a particular derived lineage or at an evolutionary event

(e.g., during the fins-to-limbs transition). For example, Ahlberg

(1989) proposed similarity bottlenecks in the lineage leading

to extant coelacanths (Latimeria) and at the origin of tetrapods

(Fig. 1B central funnel). Others have proposed that pectoral and

pelvic fins were originally different and only started to become

more similar after a first similarity bottleneck leading to bony

fishes and to sarcopterygians, which was followed by a second,

more profound similarity bottleneck at the origin of tetrapods

(Fig. 1B right funnel) (Coates and Cohn 1998; Coates et al. 2002;

Diogo et al. 2013; Diogo and Molnar 2014). These studies have

evaluated pectoral-pelvic anatomical similarity mostly by qualita-

tive comparisons of fossils (e.g., Ahlberg 1989; Coates and Cohn

1998; Coates et al. 2002) or by counting topologically equivalent

muscles in pectoral and pelvic appendages (Diogo et al. 2013;

Diogo and Molnar 2014). Using quantitative tools to measure

anatomical organization for entire appendages may help in re-

constructing the evolution of the pectoral-pelvic similarity and in

testing the presence of such similarity bottlenecks.

Here, we quantified the anatomical organization of extant

sarcopterygian appendages (lobe-fins and limbs) to assess how

similar they are to each other and how similar their pectoral

and pelvic appendages are. Specifically, we tested (1) whether

lobe-fins and limbs share a similar underlying anatomical or-

ganization or a new organization emerged in tetrapods during

the fins-to-limbs transition; (2) whether lobe-finned fishes and

tetrapods show equal values of pectoral-pelvic similarity; and (3)

whether the evolution of pectoral-pelvic similarity agrees with

previously proposed hypotheses on this evolutionary pattern (as

described above; Fig. 1B). To answer these questions, we stud-

ied the pectoral and pelvic appendages in five extant taxa that

phylogenetically bracket the fins-to-limbs transition: two lobe-

finned fishes, the African coelacanth Latimeria chalumnae and the

Australian lungfish Neoceratodus forsteri; and three tetrapods, the

axolotl Ambystoma mexicanum, the fire salamander Salamandra

salamandra, and the tuatara Sphenodon punctatus. As an out-

group for comparison, we also included a representative of the

phylogenetically most basal (i.e., widely presumed to have the

most plesiomorphic anatomy) extant lineage of ray-finned fishes,

the gray bichir Polypterus senegalus. See Methods for further

details about the selection of taxa.

To quantify the anatomical organization of these appendages,

we carried out an anatomical network analysis. First, we

built skeletal and muscular network models that capture the

gross anatomy of appendages (Fig. 2). A network model com-

prises nodes that formalize discrete anatomical parts—bones

and muscles—and links that formalize pair-wise physical con-

nections among them. Next, we measured a set of seven net-

work parameters to quantify anatomical organization, namely:

number of nodes (N), number of links (K), density of connec-

tions (D), mean clustering coefficient (C), mean shortest path

EVOLUTION 2018 3
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Figure 2. Example of the network modeling approach of a forelimb of a generalized salamander. In the skeletal network (top), nodes

formalize skeletal elements (bones + cartilages) and links formalize the presence of an articulation between two elements. In the muscular

network (bottom), nodes formalize muscles and links formalize common anchoring to a same skeletal element. The weight of links in

muscular networks captures the number of anchoring skeletal elements in common (the thicker the line, the more anchors in common

two muscles have). Pectoral and pelvic appendages of other taxa were modeled likewise. Muscles shown in the anatomical drawings:

SA, serratus anterior; LS, levator scapulae; P, pectoralis; SCR, supracoracoideus; DS, deltoideus scapularis; PCH, procoracohumeralis; SCS,

subcoracoscapularis; LD, latissimus dorsi; TB, triceps brachii; HAB, humeroantebrachialis; CR, coracoradialis; CB, coracobrachialis; PP1,

palmaris profundus of digit 1; FAL, flexor accessorius lateralis; FAM, flexor accessorius medialis; FDC, flexor digitorum communis; FACU,

flexor antebrachii et carpi ulnaris; FACUR, flexor antebrachii et carpi radialis; FBS, flexores breves superficiales, FBP, flexores breves

profundus; AbD4, abductor digiti minimi; IMC, intermetacarpales; ECR, extensor carpi radialis; S, supinator; EACU, extensor antebrachii

et carpi ulnaris; ED, extensor digitorum; EDB, extensores digitorum breves; AbED1, abductor et extensor of digit 1.
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length (L), heterogeneity of connections (H), and parcellation (P).

Figure 3 shows the calculation of these parameters in a toy-

example network (see Methods for further details). Network pa-

rameters serve as quantitative descriptors of anatomy, but they

also carry morphological and functional information. This infor-

mation derives from the underlying processes of development,

which are inherited from one generation to another, and from

the role of connections in force transmission among bones and

muscles. Box 1 summarizes the morphofunctional interpretation

of network parameters as proposed in previous studies (Esteve-

Altava et al. 2011; Rasskin-Gutman and Esteve-Altava 2014);

we used these interpretations to discuss our results. Finally, we

compared the similarity among species’ appendages and between

pectoral and pelvic appendages, as the relative difference for each

parameter and on average.

BOX 1: Morphological
interpretation of network
parameters
Network nodes (N): interacting components of the anatomical

structure, for example, bones and muscles.

Network links (L): interactions or relations among compo-

nents, for example, physical contacts. Links may directly or

indirectly contribute to biological processes, such as growth

or function.

Density of connections (D): richness or complexity of the

anatomical structure. Also anatomical integration, as it relates

to the number of interactions.

Mean clustering coefficient (C): anatomical integration, as

it relates to functional and/or developmental interdependence

among triplets of components.

Mean shortest path length (L): anatomical integration, as it

relates to the effective proximity between components that al-

lows coordination, independently of their spatial or geometric

distance.

Heterogeneity of connections (H): differentiation or aniso-

merism of components in the anatomical structure. Also ir-

regularity, as it contrasts with regular structures (zero hetero-

geneity).

Parcellation (P): degree of modularity of the anatomical struc-

ture; how well distributed are the components into the largest

number of modules possible.

Results
We measured seven network parameters that capture the anatom-

ical organization of pectoral and pelvic appendages of extant taxa

bracketing the fins-to-limbs transition (Table 1 for skeletal net-

works; Table 2 for muscular networks). We quantified the similar-

ity of anatomical organization among species and between pec-

toral and pelvic appendages as the pair-wise relative difference

(dr). A lower value of dr indicates a greater similarity between

two appendages. Tables S1–S6 show the exact values of dr for

each comparison in skeletal and muscular networks.

COMPARISON OF SKELETAL NETWORKS

The skeletons of fore- and hind limbs of tetrapods (Fig. 4)

have more elements (N) than the pectoral and pelvic ray-fins of

Polypterus and lobe-fins of Latimeria, but fewer than the lobe-fins

of Neoceratodus. This difference between Latimeria and Neocer-

atodus is due to the derived anatomy of Neoceratodus fins, which

are composed of a long series of mesomeres (up to 14), each one

articulating with preaxial and postaxial radials (for a total N = 55

and N = 65 skeletal elements in the pectoral and pelvic fin, re-

spectively). The number of articulations among skeletal elements

(K) follows a similar evolutionary pattern, with Latimeria having

values within the range of tetrapods. However, the evolution of

D, C, and L suggests a partial decrease of anatomical integration

in limbs compared to fins and reconstructed ancestral character

states: lower D, constant C, greater L. Tetrapods, and Neocera-

todus have lower values of D in pectoral and pelvic appendages

compared to ancestral state reconstructions and to Latimeria and

Polypterus. In turn, the values of C in tetrapods and Neoceratodus

are more similar to those of ancestral state reconstructions than in

the coelacanth Latimeria, whereas Polypterus has the lowest val-

ues for both appendages. Inversely to D, the parameter L increases

notably in limbs compared to ancestral state reconstructions, lobe-

fins, and ray-fins. At the same time, parameter H in skeletal net-

works has similarly low values in tetrapods and Latimeria, relative

to ancestral state reconstructions, Neoceratodus, and Polypterus.

The relatively high H of Neoceratodus might be again due to the

apomorphic anatomy of Neoceratodus fins with a large series of

radials (poorly connected, 2–3 connections each) all articulating

with the lepidotrichia (highly connected); thus increasing the ratio

between variance and mean of connections among elements. The

observation that Latimeria has a similar H to tetrapods is presum-

ably due to the fact that their lepidotrichia are more distal, and

only contact to the most distal radials; whereas in Neoceratodus

and Polypterus the lepidotrichia occupy a broader preaxial and

postaxial area and contact all radials. Finally, the evolution of P

shows that lobe-fins and limbs have a similarly greater parcel-

lation compared to the ray-fins of Polypterus (especially in the

pelvic appendage), with Latimeria showing the lowest values of

all sarcopterygians and Neoceratodus showing values close to the

reconstructed ancestral state of Tetrapoda (Tables S12–S13). In

general, lobe-fins and limbs deviate greatly from the low values of

P in Polypterus ray-fin skeleton. This pattern is consistent with the

aforementioned decrease of integration in the skeletal networks

of limbs.
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Figure 3. Visual description of the network parameter analyzed. (A) The number of nodes in this network are colored as gray dots

(N = 9) and the number of links as red lines (K = 12). (B) Density (D) is calculated for the entire network; here we show an example with

only one node. Node 1 has three realized connections (solid green) and five possible but not realized connections (dashed green); thus,

Dnode1 = 3/8. (C) Clustering coefficient (C) is calculated for the entire network; here we show an example with only one node. Node 2

(in blue) has only two neighbors, which are in turn connected to each other (solid blue), forming a 3-node loop or triangle. Because all

neighbors of node 2 are connected among them, Cnode2 = 1. (D) Shortest path length (L) is calculated for the entire network; here we

show an example with only two nodes. Three links (in cyan) are the minimum number of links required to connect node 3 and node 4;

thus, Lnode3, node4 = 3. (E) Heterogeneity (H) is calculated for the entire network; here we show an example with only two nodes. Nodes

4 and 5 have a different number of connections, one and four, respectively. If we only consider these two nodes, then H � 2.1/2.5 =
0.84. (F) Parcellation (P) is calculated after a community detection algorithm has identified the connectivity modules; two in this example:

module A and module B (dashed yellow circles). Module A has four nodes and module B has five nodes of a total of nine nodes in the

network; thus, P = 1 – [(4/9)2 + (5/9)2] = 0.49. If the network were divided less uniformly, for example, into one large module of seven

nodes and one small module of two nodes, then P = 1 – [(7/9)2 + (2/9)2] = 0.35. In contrast, if the nine nodes of the network were divided

into three modules of equal size (i.e., three 3-node modules), then P = 1 – [(3/9)2 + (3/9)2+ (3/9)2] = 0.67.

Table 1. Network parameters measured in skeletal networks.

Skeletal network N K D C L H P

Polypterus pectoral appendage 47 84 0.078 0.086 2.988 0.937 0.830
Polypterus pelvic appendage 9 9 0.250 0 2.167 0.612 0.642
Latimeria pectoral appendage 24 44 0.159 0.503 3.478 0.525 0.715
Latimeria pelvic appendage 22 42 0.182 0.353 2.593 0.482 0.740
Neoceratodus pectoral appendage 55 102 0.069 0.127 2.782 1.304 0.818
Neoceratodus pelvic appendage 64 133 0.066 0.142 2.327 1.468 0.794
Ambystoma pectoral appendage 25 35 0.117 0.227 3.870 0.515 0.778
Ambystoma pelvic appendage 32 44 0.089 0.244 4.518 0.522 0.820
Salamandra pectoral appendage 25 34 0.113 0.197 4.000 0.526 0.816
Salamandra pelvic appendage 32 42 0.085 0.201 4.669 0.491 0.820
Sphenodon pectoral appendage 37 47 0.071 0.159 5.240 0.496 0.844
Sphenodon pelvic appendage 31 36 0.077 0.151 4.910 0.514 0.849
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Table 2. Network parameters measured in muscular networks.

Muscular network N K D C L H P

Polypterus pectoral appendage 6 15 1 1 1 0 0.500
Polypterus pelvic appendage 3 3 1 1 1 0 0
Latimeria pectoral appendage 19 112 0.655 0.781 1.363 0.263 0.571
Latimeria pelvic appendage 15 82 0.781 0.915 1.219 0.278 0.498
Neoceratodus pectoral appendage 5 7 0.700 0.875 1.300 0.391 0.480
Neoceratodus pelvic appendage 37 461 0.692 0.955 1.308 0.323 0.777
Ambystoma pectoral appendage 51 309 0.242 0.733 2.136 0.633 0.700
Ambystoma pelvic appendage 59 294 0.172 0.700 2.130 0.578 0.783
Salamandra pectoral appendage 50 292 0.238 0.724 2.153 0.621 0.631
Salamandra pelvic appendage 59 290 0.169 0.703 2.181 0.571 0.784
Sphenodon pectoral appendage 49 415 0.353 0.805 1.771 0.598 0.591
Sphenodon pelvic appendage 50 364 0.297 0.712 1.827 0.328 0.630

Regarding the similarity of the pectoral skeleton among the

taxa analyzed (Table S1), on average the greatest disparity occurs

between the pectoral lobe-fins of Latimeria and Neoceratodus

(dr = 68%), whereas the lowest disparity occurs, as expected,

between Salamandra and Ambystoma (dr = 4%). The disparity

between the pectoral ray-fins of Polypterus and pectoral lobe-

fins and limbs is almost as wide (dr = 18–61%) as it is between

pectoral lobe-fins and limbs (dr = 22–58%). Also, the disparity

between the pectoral lobe-fins of Latimeria and of Neocerato-

dus is greater (dr = 68%) than it is among the pectoral limbs of

Ambystoma, Salamandra, and Sphenodon (dr = 4–28%). Without

muscles, the pectoral limbs of tetrapods are more similar (i.e., less

disparity) to the pectoral lobe-fins of Latimeria (dr = 22–42%)

than to that of Neoceratodus (dr = 42–58%). Interestingly, over

the average of all comparisons, parameter P shows the lowest dis-

parity (dr = 7%) compared to all other parameters (dr = 27–66%),

which makes the degree of modularity the least variable feature

of the anatomical organization among the pectoral appendages

studied. In turn, in the pelvic skeleton (Table S2) the greatest dis-

parity occurs between the pelvic ray-fins of Polypterus and the

pelvic lobe-fins of Neoceratodus (107%), whereas the lowest dis-

parity occurs, again, between Salamandra and Ambystoma (dr =
5%). The disparity between the pelvic ray-fins of Polypterus and

pelvic lobe-fins and limbs is greater (dr = 72–107%) than it is

between pelvic lobe-fins and limbs (dr = 31–59%). Furthermore,

the disparity between the pelvic lobe-fins of Latimeria and of

Neoceratodus is greater (dr = 71%) than it is among the pelvic

limbs of Ambystoma, Salamandra, and Sphenodon (dr = 5–14%).

Without muscles, the pelvic limbs of tetrapods are more similar

to the pelvic lobe-fins of Latimeria (dr = 31–42%) than to the

lobe-fins of Neoceratodus (dr = 54–59%). Again, P shows the

lowest disparity (dr = 12%) of all other parameters (dr = 39–

96%), which makes the degree of modularity the least variable

organizational feature also among pelvic appendages.

COMPARISON OF MUSCULAR NETWORKS

The muscular system of fore- and hind limbs of tetrapods (Fig. 5)

has more muscles (N) than in lobe-fins, ray-fins, and ancestral

state reconstructions. The lobe-fins of Latimeria and Neocera-

todus also have more muscles than the ray-fins of Polypterus.

The number of connections among muscles (K, i.e., common an-

choring sites) follows the same evolutionary pattern. However,

in both parameters, the pectoral fin musculature of Neoceratodus

is more similar to that of Polypterus than that of Latimeria and

tetrapods. This is because, as in Polypterus, the pectoral fins of

Neoceratodus have only a few differentiated muscles: retractor

lateralis ventralis pectoralis, superficial abductor, and adductors,

and deep abductor and adductor. As in the skeletal network evolu-

tion, the patterns inferred for D, C, and L portray a marked trend

toward a decrease in anatomical integration of the muscular sys-

tem from fins to limbs. The network of muscles in tetrapod limbs

has lower D and C and higher L than the ancestral state recon-

structions for lobe-fins and ray-fins. The decrease in anatomical

integration is notable in salamanders compared to Sphenodon,

with the limbs of the tuatara showing values closer to those for

ancestral state reconstructions of tetrapods. In line with this trend,

the lobe-fins of Latimeria and Neoceratodus have higher D and

C, and lower L, than ancestral state reconstructions. The pectoral

and pelvic ray-fins of Polypterus show extreme values of D, C,

L, and H, because of the presence of only a few muscles sharing

common sites of attachments (6 and 3, respectively) completely

interconnected to each other. The evolution of H in muscular

networks points to the presence of a shift toward greater differen-

tiation/specialization of muscles in limbs (higher H) compared to

ancestral state reconstructions and to lobe-fins. This shift is more

pronounced in the pectoral appendages and less pronounced in

the pelvic appendages. Similar to the results for integration pa-

rameters, the limbs of Sphenodon present values that are closer

to those of ancestral state reconstructions of tetrapods. Lastly, the
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Figure 4. Phylomorphospaces of the skeletal networks of analyzed taxa. Parameters compared include number of skeletal elements

(N), number of articulations or joints (K), density of connections (D), average clustering coefficient (C), average shortest path length

(L), heterogeneity of connections (H), and parcellation (P). Parameter values of pectoral and pelvic appendages are represented in the

horizontal and vertical axis, respectively, for each taxon. Tip colors indicate the type of appendage: ray-fin (dark blue), lobe-fin (cyan),

and limb (green). The dashed red line marks the identity line or maximum pectoral-pelvic similarity. The values for the hypothetical

ancestral states within the phylogeny (black dots) were estimated by maximum likelihood on a time-calibrated phylogeny (see Methods

for details).
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Figure 5. Phylomorphospaces of the muscular networks of analyzed taxa. Parameters compared include number of skeletal elements

(N), number of articulations or joints (K), density of connections (D), average clustering coefficient (C), average shortest path length

(L), heterogeneity of connections (H), and parcellation (P). Parameter values of pectoral and pelvic appendages are represented in the

horizontal and vertical axis, respectively, for each taxon. Tip colors indicate the type of appendage: ray-fin (dark blue), lobe-fin (cyan), and

limb (green). The dashed red line marks the identity line or maximum pectoral-pelvic similarity. The values of the hypothetical ancestral

states within the phylogeny were estimated by maximum likelihood on the time-calibrated phylogeny (see Methods for details).
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evolution of P shows also a shift toward a greater parcellation of

the appendages, in which limbs are more parcellated than in an-

cestral state reconstructions, lobe-fins (except for the pelvic fin of

Neoceratodus that is in the range of the values of P in tetrapods),

and ray-fins. This pattern is consistent with the aforementioned

decrease of integration and increase of differentiation in muscular

networks in tetrapods.

Regarding the similarity of the pectoral musculature among

the taxa examined (Table S4), on average the greatest disparity oc-

curs between the pectoral ray-fins of Polypterus and the pectoral

limbs of tetrapods (dr = 105–114%), while the lowest dispar-

ity separates the pectoral limbs of Ambystoma and Salamandra

(dr = 3%). The disparity between the pectoral ray-fins of

Polypterus and the pectoral lobe-fins of Latimeria and Neocera-

todus is in the same range (dr = 53–81%) as it is between pectoral

lobe-fins and limbs (dr = 53–86%); while the disparity between

Latimeria and Neoceratodus pectoral lobe-fins themselves is at

the lower side of this range (dr = 53%). As for the average of pa-

rameters, in contrast to the pectoral skeleton, C shows the lowest

disparities (dr = 14%) and P the second lowest (dr = 17%) of

all other parameters (dr = 36–126%), which makes the integra-

tion by interdependence the least variable organizational feature

also among the musculature of pelvic appendages. In pelvic ap-

pendages (Table S5), the greatest disparity occurs between the

pelvic ray-fins of Polypterus and the pelvic limbs of salamanders

(dr = 146–147%), while the lowest disparity occurs, as expected,

between the pelvic limbs of Ambystoma and Salamandra (dr =
1%). The disparity between the pelvic ray-fins of Polypterus and

pelvic lobe-fins and limbs is greater (dr = 110–147%) than it is

between pelvic lobe-fins and limbs (dr = 31–79%). As expected,

the lowest disparity occurs among tetrapods limbs (dr = 1–27%).

Likewise in the pelvic musculature, parameter C shows the lowest

disparities (dr = 29%) of all other parameters (dr = 38–108%),

which makes the integration by interdependence the least variable

organizational of the pelvic musculature.

COMPARISON OF PECTORAL-PELVIC SIMILARITY

Phylomorphospace plots (Figs. 4 and 5) were used to show the

evolution of the pectoral-pelvic similarity of appendages; a red

dashed line marks the equality line (1:1 line) between pectoral

and pectoral values. On average, Polypterus shows the lowest

pectoral-pelvic similarity (i.e., highest percentage of relative dif-

ference, dr) of all studied taxa, both in skeletal networks (dr =
100%; Tables S3; Fig. S1) and in muscular networks (dr = 67%;

Table S6; Fig. S2). In skeletal networks, the pectoral-pelvic sim-

ilarity of lobe-fins (Latimeria: dr = 15%; Neoceratodus: dr =
13%) is comparable to that of the limbs of salamanders (dr =
14–15%), whereas Sphenodon shows the greatest pectoral-pelvic

similarity of all taxa analyzed (dr = 10%). Among parameters, P

shows the highest similarity between pectoral and pelvic skele-

tons (dr = 6%) of all other parameters (dr = 12–44%), which

indicates that pectoral and pelvic skeletons are not very different

in the modular organization of the skeletal anatomy. In muscular

networks, the pectoral-pelvic similarity is equally high in Latime-

ria’s lobe-fins (dr = 17%) and tetrapod limbs (dr = 11–16%); but

it is much lower (dr = 60%) in Neoceratodus. However, this high

disparity of Neoceratodus at the muscular level is mainly driven

by the differences in the number of muscles (five in the pectoral

fins and 37 in the pelvic fins) and of contacts (seven and 471,

respectively), which is most likely related to a derived reduction

of the pectoral fins in Dipnoi. Interestingly, parameters D, C, L,

and H (which correct for network size) in Neoceratodus show

relative differences in muscular networks that are closer to those

of Latimeria and tetrapods; excluding N and K, pectoral-pelvic

relative difference in Neoceratodus muscular networks average

only 15%. Among parameters, L and C show the highest similar-

ity between pectoral and pelvic musculatures (L dr = 3%; C dr =
7%) of all other parameters (dr = 20–73%), which indicates that

pectoral and pelvic musculature established similar degrees of

anatomical integration of connections. Both skeletal and muscu-

lar evolutionary patterns of the pectoral-pelvic similarity reported

are in line with the presence of a similarity bottleneck in the hy-

pothetical ancestor of sarcopterygians, but not a second similarity

bottleneck at the origin of tetrapods. The secondary increase of

disparity in Neoceratodus (as expected in the hypothesis illus-

trated in the right funnel of Fig. 1B, and most likely related to a

secondary reduction of pectoral fins in Dipnoi) is only observed

at the muscular level for the number of muscles (N) and their

connections (K). In contrast, parameters measured in muscular

networks related to anatomical integration (D, C, L), differenti-

ation (H), and modularity (P) show that Neoceratodus pectoral-

pelvic similarity is in the range values observed for Latimeria

and tetrapods. Finally, the ancestral state reconstructions of sar-

copterygians and tetrapods tend to occupy positions in the phylo-

morphospaces of skeletal and muscular networks that are closer

to the maximum pectoral-pelvic similarity (Figs. 4 and 5). How-

ever, a broader sample of taxa would be needed to conclusively

map the positions of hypothetical last common ancestors in these

morphospaces.

Discussion
DISINTEGRATION, SPECIALIZATION, AND

PARCELLATION OF LIMBS

Our results show that the anatomical integration of the appendages

(as estimated by proxies D, C, and L) decreased from lobe-fins to

limbs. This is an evolutionary pattern we see in both the pectoral

and pelvic appendages. This pattern is consistent with a transition

from a web-like appendage of interconnecting bones, as in coela-

canths and extinct tetrapodomorphs (e.g., Tiktaalik; Shubin et al.
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2006, 2014), to a more tree-like appendage with digits and series

of phalanges in tetrapods. In this context, the tree-like organization

of Neoceratodus would be a secondarily derived feature or con-

vergence, which comes from the radial structure of the fins, rather

than the presence of digits with phalanges. Because tetrapods

still conserve part of a web-like arrangement among the mesopod

bones, their values of clustering (C) did not decrease compared to

Neoceratodus lobe-fins and Polypterus ray-fins, which lack such

an arrangement in any part of their fins. Moreover, most newly

evolved muscles have fewer attachments (i.e., connections) com-

pared to the undivided muscle masses of lobe-fins (e.g., deep and

superficial adductors and abductors) (Diogo et al. 2016). Together,

these findings suggest that the increased number of autopodial

bones and newly differentiated muscles in evolving limbs was not

accompanied by a proportional increase of new physical contacts.

Hence, limbs became less anatomically integrated compared to

lobe-fins.

Another consequence of limbs being sparsely integrated

compared to fins is the increase of modularity or parcellation

in limbs, both at a skeletal and a muscular level. In morphology,

integration and modularity are largely opposite properties, with

modules originating because of a loss of integration at the bound-

ary of two or more regions (Simon 1962; Eble 2005; Wagner

et al. 2007; Klingenberg 2008; Goswami et al. 2015; Esteve-

Altava 2017a, 2017b). The proxy used to evaluate the parcella-

tion of fins and limbs in anatomical networks (P) shows a marked

shift toward an increase of modularity from fins to limbs. This

means that tetrapod limbs have more, and more balanced, mod-

ules than ray-fins. In this scenario of increasing modularity, lobe-

fins adopted intermediate values between ray-fins and limbs, as

expected by their phylogenetic position. This may indicate that

evolving a greater degree of modularity of appendages was a nov-

elty acquired prior to the fins-to-limbs transition, which was later

reinforced in tetrapods.

Here, we show also that integration and parcellation have

evolved differently for the skeletal and for the muscular compo-

nents of appendages. Anatomical parcellation is the most simi-

lar organizational feature among skeletons of different taxa and

between pectoral and pelvic appendages of the same taxon. In

contrast, anatomical integration (specifically, C and L) is the most

similar feature for the musculature, for all comparisons among

and within appendages. Although coordinated morphological re-

sponses are necessary for organisms to adapt to new conditions,

bones and muscles respond differentially in time and magnitude

to evolutionary pressures (Diogo et al. 2013). This difference be-

tween skeletal and muscular networks suggests a decoupled mod-

ularity response to different functional demands for the skeleton

and the musculature during evolution. Further studies including

more taxa, and in different groups, will be needed to test this

preliminary inference.

In tandem with the relative reduction in anatomical integra-

tion in tetrapods, muscle groups also changed their connectiv-

ity patterns, becoming more functionally specialized in tetrapods

than in lobe-finned fishes (Diogo et al. 2016). The evolution of

heterogeneity (H) or anisomerism in muscular networks matches

this specialization of appendicular muscles. In fins, muscle masses

are few and similarly connected (lower H), and tend to be more

generalized in their potential actions (e.g., adductor and abductor

muscles) (Diogo et al. 2016; Molnar et al. 2016, 2017). In limbs,

we find a wider variety of muscles between two extremes (higher

H): some limb muscles establish a few short-range connections

and function more locally (e.g., intermetatarsales, flexores breves

profundi, and contrahentes pedis, each of which has two connec-

tions), while others establish many long-range connections and

function more globally (e.g., flexor digitorum communis, contra-

hentium caput longum, extensor digitorum longus) (Diogo and

Abdala 2010). We speculate that this increase in heterogeneity

and specialization of the anatomy of limbs enhanced or facilitated

the evolution of a wide range of locomotion strategies within

tetrapods.

To what extent is the reported evolution of network integra-

tion and parcellation related to variational (shape) and develop-

mental modularity in fins and limbs? This remains highly un-

certain. Unfortunately, studies on the morphological integration

and modularity of pectoral and pelvic fins are scarce (reviewed

in Esteve-Altava 2017b). For example, the modularity of fins has

been studied in fishes, comparing patterns of presence and dispar-

ity among pectoral, pelvic, dorsal, anal, and caudal fins (Larouche

et al. 2015, 2017); however, these studies did not test whether

each fin has variational modules or it is entirely integrated. To our

knowledge, there are no studies of variational modularity in lobe-

fins. The vast majority of studies of morphological integration

and modularity in appendages focus on limbs and use morpho-

metrics to assess skeletal shape variation (Esteve-Altava 2017a).

These studies found variational modules in many tetrapod groups,

including salamanders (Kolarov et al. 2011). However, morpho-

logical integration among modules may vary within limbs due to,

for example, ecological specialization (Young et al. 2010; Martı́n-

Serra et al. 2015) or developmental stage (Kolarov et al. 2011;

Maxwell and Dececchi 2012). On the other hand, developmen-

tal studies highlight the differences in modularity we observed

in the parcellation of fins and limbs. For example, ray-fins have

been suggested to have fewer skeletal compartments or modules

(one radial domain + fin ray) than sarcopterygian fins (three

endoskeletal domains + fin ray) and limbs (stylopod, zeugopod,

and autopod) (Yano and Tamura 2013). In addition, tetrapods have

pectoral and pelvic girdles that also show a developmental semi-

independence (Sears et al. 2015). From a developmental point of

view, some studies have speculated that the different degree of

parcellation between fins and limbs might be a consequence of a
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combination of various developmental mechanisms; for example,

decoupling of the Meis/HoxA11/HoxA13 expression, the more

distal and late expansion of the 5’HoxD genes, and timing of

the apical ectodermal ridge (AER) to apical fold (AF) transition

(Yano and Tamura 2013).

NEOCERATODUS IS AN UNUSUAL FISH

As our results show, the corresponding forelimbs and hindlimbs

of the three tetrapod taxa resemble each other more than pectoral

and pelvic fins of lobe-finned fishes do, respectively. Interestingly

though, lobe-fins vary in their similarity to limbs, with Latimeria

often being more similar to tetrapods than Neoceratodus despite

their phylogenetic positions. In fact, most analyses place Neocer-

atodus closer than Latimeria to the tetrapod stem (e.g., see Irisarri

et al. 2017). Neoceratodus deviates from Latimeria, for example,

in the number of parts, anatomical integration, and parcellation.

A closer look at the gross anatomy of Neoceratodus, compared

to that of Latimeria, demonstrates that the lobe-fins of Neocer-

atodus have an extremely derived anatomy, which comprises a

long series of mesomeres (often 14, but sometimes more), each

accompanied by four or five pre- and postaxial radials. In addi-

tion, the musculature of the pectoral fin is secondarily simplified,

with only five muscle masses, whereas the pelvic fin presents

a sequence of pronator and supinator muscles (one of each for

each mesomere) (Diogo et al. 2016). This reduction in number

of muscles is most likely related to the secondary (derived) re-

duction of the pectoral fins of Neoceratodus that occurred during

dipnoan evolutionary history (Diogo et al. 2016). The anatomy

of Neoceratodus fins is unusual, especially, when compared with

what is known of stem tetrapodomorphs such as Eusthenopteron

(Andrews and Westoll 1970), Panderichthys (Boisvert 2005;

Boisvert et al. 2008), or Tiktaalik (Shubin et al. 2006, 2014).

Only when we compare Neoceratodus to extinct porolepiform

lobe-finned fishes like Glyptolepis (Ahlberg 1989) can we see

a similarly derived anatomy, with a long series of mesomeres

and radials. Based on our findings about the network topology

of lobe-fins and limbs, we infer that Latimeria retains more an-

cestral traits for Sarcoptergii for extant phylogenetic bracketing

in reconstructing the muscular anatomy of intermediate forms

between lobe-finned sarcopterygians and tetrapods (e.g., Molnar

et al. 2017), and for comparisons based on anatomical network

analysis. Furthermore, the addition of dipnoan fossils to future

analyses could clarify the patterns of change in that clade and

more broadly in Sarcopterygii that led to the unusual form of

lobe-fins in derived dipnoan taxa such as Neoceratodus.

BOTTLENECKS IN PECTORAL-PELVIC SIMILARITY

Ray-fins and sarcopterygian appendages (lobe-fins and limbs) dif-

fer in their pectoral-pelvic similarity, whereas lobe-finned fishes

and tetrapods have closer values of pectoral-pelvic similarity. Al-

though pectoral-pelvic similarity in lobe-fins is within the range

observed in tetrapods for the skeleton, when muscles are com-

pared, Neoceratodus deviates from the tetrapod range and occu-

pies an intermediate position between Polypterus and tetrapods.

However, this deviation is mostly driven by differences in the

number of muscles and attachments derived likely from the loss

of pectoral fin muscles in Neoceratodus, due to a secondary sim-

plification of its pectoral appendages (Diogo et al. 2016). In fact,

network parameters related to anatomical integration and hetero-

geneity indicate that Neoceratodus has a pectoral-pelvic similarity

partially within the range of tetrapods and Latimeria for muscular

networks.

On a separate note, studies comparing shape variation be-

tween pectoral and pelvic appendages have also reported simi-

larities of morphological integration in tetrapods (Hallgrı́msson

et al. 2002; Young et al. 2005, 2010; Goswami et al. 2014). These

studies often link the presence of similar patterns of morpho-

logical integration between fore- and hindlimbs to serial homol-

ogy and/or to shared developmental toolkits (Wagner 1989, 2014;

Shubin et al. 1997; Hallgrı́msson et al. 2002). However, patterns of

integration of shape covariation between fore- and hindlimbs can

change by differential functional specializations of each pair of

appendages (Young et al. 2010; Villmoare et al. 2011). Our results

at the anatomical network level support the idea of pectoral-pelvic

integration in sarcopterygians, which evolved similarly higher

anatomical integration compared to nonsarcopterygian fishes with

ray-fins.

Finally, our results confirm the presence of a similarity bot-

tleneck leading to sarcopterygians, which is only predicted by

one of the three hypotheses presented (Fig. 1B, right funnel).

These results partially supports the two-bottleneck hypothesis

(osteichthyes and sarcopterygians) proposed by Coates and Cohn

(1998), Coates et al. (2002), Diogo et al. (2013), and Diogo and

Molnar (2014). However, this hypothesis also predicts an ad-

ditional bottleneck leading specifically to tetrapods, which we

cannot confirm or reject with the anatomical network analysis

of appendages. This additional bottleneck is supported by the

comparison of the number of muscles and bones that are topolog-

ically similar in the pectoral and pelvic appendages (see Diogo

et al. 2013; Diogo and Molnar 2014). In general, our findings

are in line with the idea that pectoral-pelvic similarity of limbs

is mainly due to parallel or convergent evolution within gnathos-

tomes, rather than due to serial homology, because tetrapods show

larger average similarities in the organization of the skeleton and

muscles of appendages than lobe-finned and ray-finned fish. Fu-

ture anatomical network studies, including sarcopterygian fish

fossils as well as early tetrapod fossils, could further test these

ideas and can also help to clarify why some of the network patterns

that we found differ between skeletal and muscular structures. We
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expect that the findings presented in this study on the anatomical

similarities between lobe-fins and limbs, and between pectoral

and pelvic appendages, will inform future reconstructions of the

musculoskeletal anatomy in such fossil taxa and thus be helpful

in gaining a better understanding of the origin and later diversifi-

cation of tetrapod limbs.

Methods
GATHERING ANATOMICAL INFORMATION

We dissected the pectoral and pelvic appendages of Polypterus

senegalus (Actinopterygii: Polypteridae), Latimeria chalumnae

(Sarcopterigii: Coelacanthiformes), Neoceratodus forsteri (Sar-

copterygii: Dipnoi), Ambystoma mexicanum (Urodela: Am-

bystomatidae), Salamandra salamandra (Urodela: Salamandri-

dae), and Sphenodon punctatus (Lepidosauria: Rhynchocephalia).

All specimens examined were wild-type adults, donated frozen

or preserved; no experiments on live animals were performed for

this study. Three frozen specimens of Polypterus senegalus (HU

PS1, HU PS2, and HU PS5-1) were donated by the Department

of Anatomy at Howard University College of Medicine, USA,

and dissected under magnification. One formalin-fixed specimen

of Latimeria chalumnae (SZ10378) was dissected and serial his-

tological sections of one embryo of Latimeria (CCC163K) were

examined at the Institüt für Evolution und Ökologie, Universität

Tübingen, Germany. Two formalin fixed specimens of Neocer-

atodus forsteri (JVM-I-1051NC, JVM-I-1052NC) were donated

by Macquarie University, Australia, and dissected under mag-

nification. In addition, MRI scans of Latimeria chalumnae and

Neoceratodus forsteri were provided by the Digital Fish Library,

UCSD (www.digitalfishlibrary.org). Images were resized in Im-

ageJ (NIH) and 3D reconstruction of fin skeleton and muscles

was performed with Amira 5.2.1 (Visage Imaging) with man-

ual segmentation of structures. Three specimens of Ambystoma

mexicanum (HU AM1, HU AM2, and HU AM5-1) were do-

nated by the Department of Anatomy at Howard University Col-

lege of Medicine, USA, and dissected under magnification. Five

specimens of fire salamanders (Salamandra salamandra; Royal

Veterinary College (UK) specimens RVC-JRH-SAL1 through

SAL5) that had died in captivity from reasons unrelated to this

study were dissected under magnification. Two specimens of the

tuatara Sphenodon punctatus were dissected under magnifica-

tion; these were “no data” museum specimens (Natural History

Museum (London, UK) specimen BMNH1935.12.6.1; Califor-

nia Academy of Sciences (San Francisco, USA) specimen CAS

208882) collected long before our study under unknown con-

ditions. For simplicity, sesamoid bones (e.g., Regnault et al.

2017) were not coded in these networks, nor were soft tissue

contacts/attachments such as cartilages and ligaments, but future

analyses could add such data.

Taxa were selected because they possess the relatively most

plesiomorphic anatomy of appendages of extant taxa bracketing

the fins-to-limbs transition (i.e., rootward and crownward relative

to Tetrapoda/Amniota) and because they were available for dissec-

tion. Thus, we chose tetrapod taxa with plesiomorphic anatomies,

such as salamanders and tuatara, and excluded frogs which have

highly specialized limbs. Of the two species of extant coelacanth

species, Latimeria chalumnae (listed as critically endangered by

the IUCN) and Latimeria menadoensis (listed as vulnerable by

the IUCN), only the former was available for dissection and there

is no indication that the latter taxon’s anatomy is divergent from

the former’s. Of the six extant species of lungfishes, Neocera-

todus forsteri is the only one not having extremely simplified

appendages. Given the few available taxa of lobe-finned fishes,

a larger sample size would only be possible by including more

tetrapods (e.g., mammals, crocodiles, turtles). Importantly, we de-

cided not to do this to avoid a bias toward tetrapod forms in our

comparisons. Furthermore, it was qualitatively clear to us that the

bones and muscles of these amniote taxa are not so divergent that

they would greatly alter our conclusions about bottlenecks or gen-

eral evolutionary patterns (e.g., close to the origin of Tetrapoda or

more rootward of it). To minimize potential intraspecific variabil-

ity in the arrangement of bones and muscles in the taxa selected,

we carried out an extensive literature survey (Goodrich 1930;

Francis 1934; Millot and Anthony 1958; Young et al. 1989; Diogo

and Abdala 2010; Diogo and Tanaka 2012, 2014; Boisvert et al.

2013; Wilhelm et al. 2015; Diogo et al. 2016; Miyake et al. 2016;

Molnar et al. 2016; Regnault et al. 2017; and references therein) to

establish, and use, the most common anatomical configuration for

each taxon. In this survey, we found minimal or no clear discrep-

ancies between studies; none of which would appreciably alter our

results. Finally, because we focused on the muscular anatomy, we

decided not to include any extinct taxa—for which there are only

incomplete muscular reconstructions—in the present study. Our

open dataset would allow future studies to add more extant and/or

extinct taxa to modified analyses.

MODELING ANATOMICAL NETWORKS

We built skeletal and muscular network models of the pectoral and

pelvic appendages of each species using the anatomical informa-

tion gathered from dissections and the literature. A network model

comprises a set of nodes and a set of links connecting the nodes

(as in Fig. 2). Skeletal networks were modeled as undirected,

unweighted networks in which nodes represent skeletal elements

(ossified and cartilaginous) and links represent the presence of a

physical joint or articulation between a pair of elements. Mus-

cular networks were modeled as undirected, weighted networks

in which nodes represent differentiated muscles and links repre-

sent the number of shared sites of anchoring (e.g., origin, inser-

tion) between two muscles. Nodes disconnected from the largest
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component of each network were excluded from these analyses

because some functions did not tolerate disconnected nodes or

yield unreliable values when they were present. The weights of

links in muscular networks were ignored for the quantification of

parameters for the same reasons, but they were considered for the

search of connectivity modules.

ANATOMICAL NETWORK ANALYSIS

We measured seven network parameters to evaluate the anatom-

ical organization of pectoral and pelvic appendages, namely: the

total number of nodes (N) and of links (K), density of connections

(D), mean clustering coefficient (C), mean shortest path length

(L), heterogeneity of connections (H), and parcellation (P). Pa-

rameters N, K, D, C, L, and H were computed in R using algo-

rithms implemented in the package igraph version 1.0.1 (Csardi

and Nepusz 2006). Parameters N and K are simple counts of the

number of elements and interactions modeled. Parameters D, C,

L, and H are well-known parameters in network sciences; details

on their mathematical equations were given elsewhere (Rasskin-

Gutman and Esteve-Altava 2014). In short, D measures the actual

number of connections divided by the maximum number possible

(it ranges from 0 to 1). C measures the average of the ratio of a

node’s neighbors that connect among them (it ranges from 0 to 1).

L measures the average number of links required to travel between

two nodes (minimum 1). H measures the variability in the num-

ber of connections of nodes (minimum 0) as the ratio between the

standard deviation and the mean of the number of connections of

all nodes in the network. Finally, the parameter P was computed

from the connectivity modules identified in the best partition of

the network (see below); connectivity module are groups of nodes

with more links to nodes within the group than to nodes outside

the group. P is defined as P = 1 − ∑
m=1 ( Nm

N )
2
, where Nm is the

number of nodes in module m, and N is the total number of nodes

of the network. P is 0 when all nodes are in a same module, and

P tends toward 1 when nodes are evenly distributed within many

modules. To calculate P, we first needed to identify the number of

modules and the nodes included in them. Connectivity modules

were identified using the spin-glass model and simulated anneal-

ing algorithm (Reichardt and Bornholdt 2006) implemented in the

package igraph for R. To account for stochasticity, we performed

1000 iterations of the algorithm and selected the best result. We

provided the details of the modularity results in Tables S17–S29

for skeletal networks and Tables S39–S51 for muscular networks

for further record.

The robustness of parameter values due to potential errors

in identifying the particular bones and muscles and their connec-

tions from dissections was accounted by comparing the observed

values to a randomly generated sample of 10,000 noisy networks

for each one of the anatomical network of the study. A noisy

network is generated by rewiring the links of the original mus-

culoskeletal network with a probability of 5%; this introduces a

5% artificially generated error. To assess for robustness we com-

pared observed values to the empirical distribution of values in

the sample of noisy networks. Specifically, we tested the H0 that

observed value is equal to the sample mean. We rejected the H0

with a P-value of 0.05 if the observed value is in the 5% end of

the distribution of simulated values. Tables S7–S11 for skeletal

networks and Tables S30–S34 for muscular networks summa-

rize the sample mean, standard deviation, standard error of the

mean, the interval for the 95% of simulated values, and the result

of the empirical statistical test (“TRUE,” we cannot reject H0;

“FALSE,” we reject H0 with P-value 0.05). A value of “TRUE”

in Tables S11 and S34 means that the observed value of this

parameter in this anatomical network is not different from the

average measured in the sample of 10,000 noisy networks with

artificially generated errors. This is the case for every parameter

on every network, with a few exceptions, namely: parameter H

in Neoceratodus pectoral and pelvic skeletal networks, parame-

ter C in Neoceratodus pelvic muscular network, and parameter P

in Salamandra and Sphenodon pelvic muscular networks. There

is no way to generate random variation without creating unreal-

istic connections, that is, connections in which we could not in

reality had made a dissection/coding error or for which no such

natural variation exists (e.g., an ulnare connecting with a femur,

or a pelvis disconnected from a femur). Unfortunately, manually

curating the 10,000 noisy networks one by one is unfeasible in

practice, whereas dissecting more specimens is not possible be-

cause they are endangered species and/or difficult to obtain and

time-consuming to code for detailed network parameters.

QUANTIFICATION OF ANATOMICAL SIMILARITIES

We measured the similarity among appendages, and between pec-

toral and pelvic appendages, as the relative difference of values

for each parameter,dr = (x − y)/((x + y)/2), where x and y are

the two values compared. Results are shown as percentage of dr

for each pair of networks compared, and for each parameter, sep-

arately. We also computed the mean and standard deviation of dr

for the seven parameters in every comparison. Note that similarity

is inversely related to dr: higher values of dr indicate lower sim-

ilarity between appendages; likewise, lower values of dr indicate

greater similarity. Tables S1–S6 show the measured values.

PHYLOGENETIC COMPARISONS

With the sole purpose of helping to visualize the relative simi-

larity among appendages, we plotted phylomorphospaces for ev-

ery network parameter measured in skeletal and muscular net-

works. These plots project the phylogeny into a morphospace

of two traits—values of a parameter for the pectoral and pelvic

appendage—which allows us to compare visually the differences

in similarity among taxa. Values for the pectoral appendages were
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plotted along the x-axis; values for the pelvic appendage were plot-

ted along the y-axis. For reference we added lines of equality, or

identity, to phylomorphospaces to mark complete pectoral-pelvic

similarity (dashed red lines), not to be confused with correla-

tion lines. We created these phylomorphospaces using the func-

tion phylomorphospace in the R package phytools (Revell 2012).

This function internally estimates the values for hypothetical

taxonomic units using maximum likelihood. However, such esti-

mations must be taken with caution because of the small sample

size. For reference, we provided the reconstructed values and 95%

CI in Tables S12 and S13 for skeletal networks and Tables S35

and S36 for muscular networks.

Limitations of our sample size, described above, prevent

performing meaningful statistical tests. Nevertheless, for com-

pleteness, we have included in the Supporting Information the

results of a Moran’s I test of autocorrelation using neighboring

weights (Tables S15 and S37). Moran’s I tests were performed

using the function Moran.I of the package ape (Paradis et al.

2004). Likewise, we performed correlations through the origin of

phylogenetic independent contrasts between pectoral and pelvic

appendages (Tables S16–S38). This test was performed using the

functions pic and lmorigin of the package ape. As expected, pa-

rameters in pectoral and pelvic skeletal networks show nonsignif-

icant phylogenetic autocorrelation; while only two parameters in

pectoral muscular networks (D, L) and three (D, L, H) in pelvic

muscular networks show a significant phylogenetic autocorrela-

tion below the 5% significance level (and none of them below

the 1%). In turn, pectoral and pelvic appendages correlate signi-

ficatively for parameters of skeletal networks (which do not show

phylogenetic autocorrelation), while only two out of seven cor-

relations between pectoral and pectoral appendages in muscular

networks are significant (D pec-pel, L pec-pel). Because of the small

size of our sample, we have refrained from discussing these re-

sults further in the main text. This problem would not easily be

ameliorated by including more extant tetrapods because more ex-

tant nontetrapods would then need inclusion to prevent imbalance

in the analyses.

Phylogenetic visualizations and tests were performed using

a consensus phylogeny of the studied taxa created using informa-

tion from Tree of Life Web Project (Janvier 1997). Branch lengths

were calibrated in millions of years of evolution for the minimal

divergence time of each taxa crown group according to the Pa-

leobiological Database (available at https://paleobiodb.org/). For

example, the split of Sphenodon from the two salamanders was

set as the split between amniotes (Reptiliomorpha) and lissam-

phibians (Temnospondyli), 312 Ma. Note that the branch lengths

shown in phylomorphospaces do not correspond to the actual

tree lengths, but represent differences in the values of parameters

among taxa.
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