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Summary
Molecules are rapidly replacing morphology as the preferred source of evidence for generating phylogenetic 

hypotheses. Critics of morphology claim that most morphology-based characters are ambiguous, subjective and prone 
to homoplasy. In this paper we summarize the results of recent Bayesian and parsimony-based cladistic analyses 
of the gross muscle morphology of primates and of other animals that show that morphological evidence such as 
muscle-based data is as capable of recovering phylogenies as are molecular data. We also suggest that recent 
investigations of neural crest cells and muscle connectivity might help to explain why muscles provide particularly 
useful characters for inferring phylogenies. Lastly, we show how the inclusion of soft tissue-based information in 
phylogenetic investigations allows researchers to address evolutionary questions that are not tractable using 
molecular evidence alone, including questions about the evolution of our closest living relatives and of our own clade.
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Introduction
There has been a marked decline in the number of morphology-

based phylogeny reconstructions. Critics of the use of morphology 
claim that morphological characters are ambiguous, that the 
delineation of homology is subjective, and that phenotypic features 
are particularly prone to homoplasy [1-5]. In this paper, we use our 
experience with the morphology of a wide range of animal groups, but 
most recently with the morphology of the striated muscles of primates, 
as well as with other areas of knowledge such as developmental and 
evolutionary biology, to argue that that morphological evidence such 
as muscle-based data is as capable of recovering phylogenies as are 
molecular data. We briefly review the results of recent Bayesian and 
parsimony analyses of myological characters that addressed the higher-
level phylogeny of the whole primate clade, plus the results of analyses 
that used muscle morphology to recover the relationships among 
other groups of animals. We also review research on neural crest cells 
and muscle connectivity that might help to explain why muscles are 
apparently particularly useful for inferring phylogeny. We then address 
the phylogenetic and evolutionary implications of the data discussed in 
the paper in terms of the role myology can play in evolutionary biology 
and systematics.

Role of Myology in Systematic Biology
Molecular evidence from whole protein studies [6], single-

copy DNA-DNA hybridization [7,8], nuclear DNA sequences [9-
13], mitochondrial DNA sequences [14-16], from both nuclear and 
mitochondrial DNA sequences [17,18] and also from Alu elements [19] 
provide support for the relationships among the major primate clades 
shown in figure 1. It should be noted that although a few molecular 
studies have contradicted some of the higher (more inclusive) clades 
shown in the tree of figure 1 (e.g., Chatterjee et al. supported a Tarsius 
+ Strepsirrhini group) [20], the clades depicted have, in general, 
being consistently supported in the most comprehensive molecular 
phylogenetic analyses is a MRP - matrix representation with parsimony 
- supertree of mammals [17,18,21,22]. With respect to the more specific 
intra-relationships (within each of these higher clades) that are shown 
in figure 1, the only major difference among the results of the more 
recent analyses is that in Fabre et al.’s and in Perelman et al.’s[17,21] 

studies some cebids (e.g., Saimiri or Callithrix) [17,21] appear closer to 
aotids (e.g. Aotus) than to other cebids (e.g., to Callithrix in Fabre et al., 
or to Saimiri in Perelman et al.) [17,21], while in Arnold et al. [18] study 
the cebids form a monophyletic group. The close relationship between 
Callithrix and Saimiri, and the monophyly of the Cebidae proposed 
by Arnold et al. [18] are consistent with the results of the most recent 
and complete molecular analysis of platyrrhine relationships [23-27]. 
Thus, it can thus be said that the tree shown in figure 1 summarizes the 
relationships among the major groups within the order Primates that 
are supported by the most up-to-date molecular evidence, and it is this 
tree that we can thus be used to validate other non-molecular methods 
for recovering phylogeny.

The results of the first comprehensive cladistic analysis of the 
higher-level phylogeny of all of the major extent groups of primates (18 
genera) that included both molecular characters and a large number of 
morphology-based characters [28] was consistent with the tree shown 
in figure 1. The 264 morphology-based characters (mainly compiled 
from previous data) [29,30] used by Shoshani et al. [28] included some 
soft-tissue data, but the vast majority of the characters were based on the 
hard tissue anatomy of various regions of the body. Although Shoshani 
et al. [28] stressed that their study was the first published report “based 
on a rigorous maximum parsimony computer analysis of a large data 
matrix on living Primates” to provide “morphological (cladistic) 
evidence” for the chimp-human clade, that clade structure was only 
weakly supported (e.g., their cladistic analysis had a bootstrap support 
value of just 42 (out of 100).” In particular, the results of the Shoshani 
et al. [28] analysis supported the monophyly of the clade Haplorrhini 
(i.e., Tarsius plus anthropoids), as most (but not all) molecular studies 
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do (Figure 1) but Shoshani et al.[28]  noted that various paleontological 
studies have supported a Tarsius-Strepsirrhini clade. This is just one 
of several examples that are cited to demonstrate that the results of 
fossil-based analyses are contradicted by molecular and neontological 
morphological evidence, but according to Shoshani et al. [28] in this 
case the discrepancy may be due to an incorrect interpretation of the 
paleontological evidence (e.g., some of the features considered by 
paleontologists to support a closer relationship between tarsiers and 
strepsirhines are probably plesiomorphies). But does this mean that 
molecular data should have primacy over morphological data with 
respect to phylogeny reconstruction? To address this question, in this 
paper we thus focus on how evidence about muscle morphology has 
contributed to phylogeny reconstruction in various groups of animals.

In one of the first studies that considered the utility of myological 
data for phylogenetic reconstruction, Borden [31] described the 
configuration and variation of 93 muscles in 15 species of the genus 
Naso or Unicornfishes (Teleostei: Percomorpha) and discussed the 
phylogenetic implications of the results. Borden suggests [31] that 
phylogenetic studies have neglected evidence from myology because 
“investigators may be reluctant to use myology due, for example, to the 
plethora of names that have been used to describe the same muscles, 
to the realization that osteological proficiency is mandatory in order 
to identify muscles, leading them to concentrate only on osteology, or 
to the requirement of potentially finer dissection to preserve muscle 
bundles and nerves”. In consequence “of those studies using myology 
as a basis of information, most are functional works often analyzing 
the role of various muscles in feeding or locomotion or comparing a 
muscle or specific group across a number of taxa systematically and/
or ecologically related” [31]. Diogo [32,33] compared the incidence 
of homoplasy and the utility of 91 myological and 303 osteological 
characters used in the reconstruction of the higher-level phylogeny of a 

diverse group of teleosts, the Siluriformes (or catfish). The results of both 
of these studies indicate that osteological structures generally display 
more morphological variation (i.e., incorporate more character states) 
than do myological ones. Thus, although hard-tissues usually provide 
more characters suitable for phylogenetic analyses, myology-based 
characters are generally more effective at recovering the relationships 
among higher clades that are supported by molecular data. Diogo 
[34] increased the scope (a total of 356 characters in 80 extant and 
fossil terminal taxa) and reach of his cladistic analyses by extending 
them to include the osteichthyan clade (bony ‘fish’ plus tetrapods), 
and he also found that hard tissue structures (bones and cartilages) 
displayed more variation than the myological ones. For example, the 
81 osteological structures examined for Diogo’s [34] cladistic analysis 
provided 198 phylogenetic characters (i.e., 2.4 phylogenetic characters 
per osteological component), while the 63 muscles examined provided 
122 phylogenetic characters (i.e., 1.9 phylogenetic characters per 
muscle). However, the mean Retention Index (RI) of the informative 
muscular characters examined by Diogo [34]  (0.82) was higher than 
that of the informative osteological characters examined (0.71) (i.e., 
the myological characters used by Diogo [34] were on average more 
useful for the retention of the clades obtained in the cladistic analysis of 
his complete dataset than the hard tissue-based characters). A similar 
pattern was seen for the Consistency Index (CI), in which the number 
of informative myological characters used by Diogo was significantly 
higher than that for the informative osteological characters (0.71 
and 0.52, respectively). Thus, both of these studies suggest that 
although osteological structures provide more potential characters for 
phylogenetic analyses, for one reason or other myological characters 
are more useful for inferring the phylogenetic relationships among 
higher clades. This suggestion has been corroborated in studies that 
have focused on other major vertebrate groups such as teleosts [35,36], 
birds (e.g., McKitrick [37]), squamates (e.g., Abdala and Moro [38,39]), 
hominoids (Gibbs (1999); Gibbs et al. (2000); Gibbs et al. (2002) [40-
42]), including fossil groups such as dinosaurs (e.g., Dilkes [43]).

Muscles, Homoiology, and Developmental Biology
Gibbs et al. [42] suggested that the apparently high reliability of 

muscle characters for recovering the phylogeny of higher taxa may 
be due to the way muscles develop. The results of experiments using 
rhombomeric quail-to-chick grafts to investigate the influence of 
hindbrain segmentation on craniofacial patterning [44] indicated that 
rhombomeric populations remain coherent during ontogeny, with 
rhombomere-specific matching of muscle connective tissue with their 
attachment sites for all branchial and tongue muscles. However, the 
Köntges and Lumsden [44] study concerns only the head muscles and it is 
related to the connective tissue/fasciae associated with the muscles, and 
not with the ontogenetic and/or phylogenetic origin of these muscles. 
So, for example, the avian hyobranchialis (‘branchiomandibularis’) is 
a branchial muscle [45,46] but anteriorly it is attached to hyoid (2nd 

arch) crest-derived skeletal domains (i.e., the retroarticular process 
of the mandible) because the anterior part of this muscle is associated 
with connective tissue/fasciae that is derived from hyoid crest cells. The 
hyobranchialis is the only muscle studied by Köntges and Lumsden [44] 
that derives its connective tissue from more than one branchial arch 
for its posterior moiety (i.e., the 3rd and 4th arches) and, accordingly, 
it inserts onto 3rd and 4th arch crest-derived skeletal domains. Three 
hypobranchial muscles, hyoglossus, hypoglossus and genioglossus, 
are also consistent with the model proposed by Köntges and Lumsden 
[44]. Previous mapping studies have shown that the myocytes and 
the innervation of these three muscles are derived from the posterior 
axial levels of the first somites. However, as explained by Köntges and 

Figure 1: Tree showing the higher-level primate relationships according to the 
consensus tree of Arnold et al.’s [18] molecular Bayesian cladistic analysis 
based on both mitochondrial and autosomal genes (in order to make it easier 
to compare their results with the results of our own cladistic study based on 
muscles, only the 18 primate genera included in our study are shown in this tree; 
for more details, see text). The taxonomic nomenclature mainly follows that of 
Fabre et al. [17]. The branch lengths depicted in the figure are uninformative.
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Lumsden [44] the skeletal attachment fasciae of these three muscles are 
“derived from the more anterior axial levels of cranial neural crests” and 
these author’s suggest that this is why the genioglossus and hypoglossus 
are attached to skeletal elements such as the paraglossals and the 
ventral basihyoid (Köntges and Lumsden [44]), which are derived from 
mandibular arch crest originating in the posterior midbrain. It is also 
why the hyoglossus (‘ceratoglossus’), which is also ontogenetically and 
phylogenetically derived from the geniohyoideus, is attached to hyoid 
(2nd arch) crest-derived skeletal elements. The attachments of these three 
hypobranchial muscles are primarily determined by the origin of the 
connective tissues/fasciae to which they are associated, and not by their 
ontogenetic and phylogenetic origin. There are, however, exceptions to 
the model proposed by Köntges and Lumsden [44]. For example, some 
mammalian facial muscles that are derived from the second (hyoid) 
arch and which are apparently associated with connective tissue/fascia 
also derived from this arch, move into midfacial and jaw territories 
populated only by frontonasal and first arch crest cells [47-53] have 
shown that these facial muscles behave, in terms of C-met mutations, 
as hypaxial migratory muscles. Contrary to most other head muscles, 
with the exception of the hypobranchial muscles [46] the facial muscles 
are absent in organisms with C-met mutations, thus suggesting that 
during ‘normal’ ontogeny these mammalian muscles migrate far away 
from their primary origin. As noted by Gibbs et al. [42], if the Köntges 
and Lumsden [44] model “operates elsewhere in the body, it would 
help explain how muscle gross morphology is conserved, whereas 
the shapes of the skeletal elements to which the muscles are attached 
are susceptible to changes that contrive to obscure phylogeny”. With 
regard, at least, to teleost fishes, the principal points of muscular origin 
and insertion do seem to be relatively stable [32].

Another contributory factor suggested by Gibbs et al. [42] to explain 
the relative reliability of muscle morphology for the phylogenetic 
reconstruction of higher taxa is that these structures “are not as prone 
to homoiology as skeletal characters”. The term homoiology refers 
to share the character states that are phylogenetically misleading 
because of similarities in the way that organisms interact with the 
environment. Thus, because bone is a dynamic tissue, “many osseous 
morphologies would be homoiologous”, whereas they suggest that 
with respect to muscular and soft tissues it is likely that “homoiology 
(played) a minor role in the generation of the phenotypes” because 
“whereas the mass of a muscle may be affected by activity or inactivity, 
its attachments are unlikely to be” [42]. However, homoiology cannot 
be the whole explanation for the difference in phylogenetic reliability 
between osteological and myological structures, since dental enamel, 
for example, does not remodel and it therefore not obviously subject 
to homoiology [42]. But other authors have suggested that functional 
or developmental constraints may result in tooth morphology being 
particularly prone to homoplasy, and, therefore, dental structures may 
be a poor source of evidence for phylogenetic reconstructions [54].

Bayesian and Parsimony Analyses of Primates Based on 
Muscles

Soft tissue data have previously been incorporated into some 
morphology-based investigations of the relationships among the 
taxa within the primate clade [28,29] but except for Gibbs et al.’s 
[41,42] study, soft-tissue characters have always been substantially 
outnumbered by those based on hard tissues. This near total reliance on 
osteological data is particularly unfortunate because it leads researchers 
to equate ‘morphology’ with ‘hard-tissue’ morphology. For instance, 
Grehan and Schwartz [55] have recently argued that the results of 
their cladistic analysis shows that, contrary to molecular evidence, 

‘morphology’ strongly supports a (Pongo, Homo) clade. However, their 
analysis of ‘morphology’ only included three myological characters.

Gibbs et al. [42] reported the results of a phylogenetic metanalysis 
of information about the soft tissue morphology of the great and lesser 
apes. Of the soft tissue structures in the 6th edition of the Nomina 
Anatomica [56], information from the literature was available for at 
least one of the apes for 621 out of the 1783 (i.e., c.35%) listed, but only 
240 of the listed structures were found to have published information 
for all four of the non-human anthropoid apes. To be useful for a 
phylogenetic analysis, more than one state of a structure must exist 
and one of those character states must be present in two or more of 
the apes; these additional criteria reduced the character count to 171. 
These 171 structures were themselves a biased sample of the soft tissues 
for muscles (64% of the total) and the limbs (82% of the total) were 
over-represented. But either because of, or in spite of, these biases 
the 171 soft tissue structures were effective at recovering a hypothesis 
of relationships (((Pan, Homo) Gorilla) Pongo) among the hominids 
that was, and is still, consistent with the consensus hypothesis of 
relationships supported by most molecular studies and a few cladistic 
studies based solely or mainly [28] on osteological data (Figure 1). As 
stressed by Gibbs et al. [42] various hard tissue-based studies have 
supported a range of different hypotheses, including ones in which 
modern humans are more closely related to gorillas [57-60] or to 
orangutans [55,61-63] than to chimpanzees.

A recent analysis [64] attempted to overcome some of the 
limitations (e.g., lack of visual verification of the data, inter-observer 
error and narrow taxonomic scope) of the Gibbs et al. [41,42] study. It 
consisted of a systematic study of the gross anatomy of the muscles of 
the head, neck, pectoral region and the upper limb across the whole of 
the primate clade, plus several outgroups. We believe that strength of 
the Diogo and Wood [64] cladistic analysis is that it explicitly avoided 
using an arbitrary selection of characters or characters. The only bias 
in our character selection was the intentional one that we used as our 
evidence the gross morphology of all of the striated muscles in the 
regions set out above; we were careful not to cherry-pick that evidence 
for characters whose distribution was consistent with a preferred 
hypothesis. We combined data from our own dissections with carefully 
validated information from the literature and we used parsimony and 
Bayesian methods to test if the relationships supported by muscles 
were consistent with the evolutionary molecular tree shown in figure 1. 

The most parsimonious tree obtained from our analysis of 166 
head, neck, pectoral and upper limb muscle characters in 18 primate 
genera and in representatives of the Scandentia, Dermoptera and 
Rodentia (Figure 2) was 100% congruent with the evolutionary 
molecular tree (Figure 1). The full list of characters used in the cladistic 
analyses and of the synapomorphies/apomorphies of each clade/
terminal taxon shown in figure 2 is given in Diogo and Wood [64,65]. 
These characters mainly concern the presence/absence of muscles and 
of muscle bundles and differences in the origin or insertion and in the 
innervation of these muscle structures; information about the outgroup 
genera Tupaia (Scandentia), Cynocephalus (Dermoptera) and Rattus 
(Rodentia), as well as of various other mammalian taxa described in 
the literature and/or previously dissected by us, was used to polarize 
the primate character states [65]. Most primate clades shown in figure 
2 are supported by high parsimony bootstrap support values (BSVs) 
and/or high Bayesian credibility support values (CSVs) (e.g., 8 (47%) 
of them have BSVs and/or CSVs that are ≥ 94). This is thus the first 
morphological cladistic study based on a large data matrix to provide 
compelling levels of support for the chimp-human clade (BSV 75, CSV 
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94) for, as explained above, in Shoshani et al.’s [28] cladistic analysis 
including 18 extant primate genera and 264 (mostly osteological) 
characters, the chimp-human clade had a low support (BSV of 42). 
When we ran separate cladistic analyses of datasets based on the two 
main anatomical regions we sampled, namely the head and neck (HN; 
chars. 1-67) and the pectoral region and the upper limb (PU; chars. 
68-166), we found that HN muscles are more effective at recovering 
the molecular evolutionary tree of primates shown in figure 1. For 
example, whereas the consensus tree obtained from the parsimony 
analysis of 67 HN characters recovered 17 of the 20 clades shown in 
the parsimony tree of figure 2, the consensus tree obtained from the 
parsimony analysis of a larger number (i.e., 99) of PU characters only 
recovered 12 of the 20 clades. However, despite recovering a smaller 
number of the clades of the molecular tree of figure 1 than do the 
HN characters, the PU muscle characters are particularly effective at 
recovering relationships at the base of the primate clade (e.g., order 
Primates and suborder Strepsirrhini). Within both the HN and PU 
datasets the number of total evolutionary changes per muscle and the 
frequency of non-homoplastic transitions are similar. This result is 
consistent with a t-test of variable character transition rates obtained 
from the Bayesian gamma model. A recent analysis of osteological 
data revealed that the levels of homoplasy found in the dentition, the 
cranium, and the postcranium of primates are similar. It is noteworthy, 
however, that although in our parsimony analysis the frequency of 
non-homoplastic changes is much the same within the HN and PU 
datasets (about two-thirds of the changes are non-homoplastic in both 
datasets), the frequency of reversions within the HN dataset (i.e., 18%, 

with a ratio of 0.30 reversions per muscle studied) is twice that within 
the PU dataset (i.e., 9%, with a ratio of 0.16 reversions per muscle).

Morphological cladistic analyses such as these allow us to address 
other macroevolutionary topics. For instance, we recently discussed 
the impact of muscle variations in evolutionary and phylogenetic 
analyses and in particular the validity of Dollo’s law and the notion 
of atavism in evolutionary and developmental biology [66]. Another 
example concerns Bakewell et al. [67] statement that their molecular 
studies show that “in sharp contrast to common belief, there were more 
adaptive genetic changes during chimp evolution than during human 
evolution” and they claim their analysis “suggests more unidentified 
phenotypic adaptations in chimps than in humans”. The results of the 
parsimony and Bayesian analyses we refer to above indicate that, at least 
regarding to the gross morphology of the HN and PU muscles, since the 
Pan/Homo split the Hominina clade has evolved faster than the panin 
clade (2.3 times faster according to the lengths of the branches leading 
to modern humans (9) and to chimpanzees (4) in the parsimony tree 
of figure 2 and 2.4 times faster according to the number of changes in 
the branches leading to modern humans (0.071 changes per character) 
and to chimpanzees (0.030 changes per character) in the consensus tree 
obtained from the Bayesian analysis of the complete dataset). In turn, 
since the split between Gorilla and the Hominini, gorillas have only 
accumulated two unambiguous muscular apomorphies, whereas there 
are respectively 8 (4 + 4) and 13 (4 + 9) unambiguous apomorphies 
leading to extant chimpanzees and to modern humans (Figure 2) (since 
this split, the branch lengths leading to Gorilla, Pan and Homo in the 

Figure 2: Single most parsimonious tree (L 301, CI 58, RI 73) obtained from the analysis of the complete dataset (166 characters) used by Diogo and Wood [64,65]. 
Unambiguous transitions occurring in each branch are shown in white (homoplastic transitions) and black (non-homoplastic transitions) squares (numbers above 
and below the squares indicate the character and character state, respectively; for a complete list of the 166 characters used in the analyses, see Diogo and Wood 
[64,65]. Below the number and name (name only shown if clade appears in tree of figure 1, to illustrate congruence with that tree; if that is not the case the clades are 
instead named X1, X2, and so on) of each clade are shown the bootstrap support values (BSV) obtained from the parsimony analysis (on the left) and the credibility 
support values (CSV, on the center) and branch lengths (BL, on the right; shown when CSV is ≥ 50) obtained from the Bayesian analysis (gamma model). NS indicates 
total number of unambiguous evolutionary steps accumulated from basal node of tree to the respective terminal taxa; between square brackets are shown the partial 
numbers for the head and neck (on the left) and for the pectoral and upper limb (on the right) characters. * indicates support values that are <50, i.e., all clades obtained 
in the parsimony analysis were also obtained in the Bayesian analysis, excepting that the Bayesian “majority consensus” tree has a trichotomy leading to Cynocephalus 
+ Tupaia (this clade having a CSV of 53; BL of 0.046), to Rattus, and to Primates, and a trichotomy leading to Colobus, to the Cercopithecinae, and to hominoids.
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consensus tree obtained from the Bayesian analysis of the complete 
dataset are 0.018, 0.057 and 0.098, respectively).

In terms of their significance for our understanding of human 
evolution, the results obtained from our recent cladistic analyses and 
comparative anatomical studies seem paradoxical. On the one hand the 
cladistic analyses suggest there are more unambiguous evolutionary 
steps (NS) from the base of the tree to modern humans than to any 
other taxon included in the study (Figure 2). But, on the other hand, 
our comparative anatomical studies show that modern humans have 
fewer muscles than most other primates, in particular fewer than in 
strepsirrhines and tarsiiforms (Table 1). For instance, Nycticebus has a 
NS of 30 and a range of 133-139 head, neck, pectoral and upper limb 
muscles in total, while chimpanzees have an NS of 70 and 126 muscles 
in equivalent regions and modern humans have an NS of 75 but only 
123 muscles in total.

As Gould [68] noted in ‘The Structure of Evolutionary discourses 
on the importance and frequency of ‘progressive evolutionary trends’ 
have consumed a substantial part of research on the history of clades. 
However, the importance given to these ‘trends’ bears no necessary 
relationship with the relative frequency or causal weight of this 
phenomenon in the natural history of these clades. It seems more related 
to the general tendency to use ‘progressive trends’ to tell stories. Gould 
[68] stresses that evolution is a narrative science and he noted that 
“Western tradition has always favored directional tales of conquest and 
valor while experiencing great discomfort with the aimless undirected 
evolution.” He suggested that the focus on ‘progressive evolutionary 
trends’ is accompanied by the historical under-reporting of examples 
of undirected evolution. As noted by Gould [68], this type of historical 
bias is often seen in palaeontological publications, in which examples 
of stasis are often either non-reported or under-reported because such 
stability represents ‘no data’. Gould drew an analogy between these 
biases and “Cordelia’s dilemma”. Cordelia is “King Lear’s honest but 
rejected daughter”, who, “when asked by Lear for a fulsome protestation 
of love in order to secure her inheritance” chose to say nothing for she 
knew that “my love’s more ponderous than my tongue.” Lear, however, 
mistook her silence for hatred or indifference, and cut her off entirely 
(with tragic consequences that were later manifest in his own madness, 
blindness, and death) proclaiming that “nothing will come of nothing.” 
The equivalent of Cordelia’s dilemma in science is when a signal 
from nature is either not seen, or not reported. “Most clades, while 

waxing and waning in species diversity through time, show no overall 
directionality, but the bias against reporting the existence of such 
clades means that researchers chronically underestimate the frequency 
of clades that change all the time but ‘go’ nowhere” in particular 
during their evolutionary peregrinations.” The results of our recent 
study support Gould’s contention in the sense that there is no general 
trend to increase the number of muscles leading to hominoids and to 
modern humans (Table 1). That is, with respect to the muscles in the 
regions we have investigated, although modern humans accumulated 
more evolutionary transitions than the other primates included in the 
cladistic study (Figure 2) these were evolutionary transitions that did 
not result in more muscles or muscle components [46,64,65,69-73]. 
For example, although some of the nine modern human apomorphies 
acquired since the Pan/Homo split (Figure 2) involve the differentiation 
of new muscles (rhomboideus major and rhomboideus minor, extensor 
pollicis brevis and flexor pollicis longus), others involve the loss of 
muscles (levator claviculae [72] and dorsoepitrochlearis;) [64,65].

Conclusions
We suggest that morphology-based phylogeny reconstructions 

such as those based on myology should be actively promoted so 
that they can complement the information obtained in molecular 
phylogenies. Researchers should use as many different types of data 
as possible (e.g., muscles, ligaments, bones, cartilages, nuclear DNA, 
mitochondrial DNA, proteins, Alu insertions, and behavioral and 
ecological information) for these efforts.

Muscles and other soft tissue data have been particularly neglected 
in systematics, but the few cladistic analyses based on soft tissues that 
have been published to date have shown that these tissues can be 
particularly useful for inferring phylogenetic relationships, including 
those among fossil taxa. The inclusion of soft tissue-based information in 
phylogenetic investigations allows researchers to address evolutionary 
questions that are not tractable using molecular evidence, including 
questions about the evolution of the closest living relatives of modern 
humans and evolution within our own Hominina clade. In the last 
few decades the emergence of evolutionary developmental biology has 
resulted in a resurgence of interest in comparative anatomy, including 
myology [51,52,69,73-82]. Along with Assis [5], we suggest that the 
forthcoming decades will see a renaissance in the use of myology in 
phylogenetic systematics. We hope this review will contribute to this 

Lemur Propithecus Loris Nycticebus Tarsius Pithecia Aotus Saimiri Callithrix Colobus Cercopithecus Papio Macaca Hylobates Pongo Gorilla Pan Homo

Mandibular 
muscles 8 8 8 8 8 8 8 8 8 7-8 7-8 8 8 8 7 8 8 8

Hyoid 
muscles (not 
extrinsic ear)

25 24 24-26 26 24 22 23 21 22 24-25 26-27 25-26 26 26 26 26 26 27

Branchial 
muscles 14-16 14-16 15-17 14-17 16-17 14-16 14-16 15-16 14-16 13-14 16 14-15 16 17 14-15 15-16 15 16

Hypobranchial 
muscles 12 12 12-15 12-15 12 12-13 11-12 12 13 12 12 13 13 13 12-13 13 13 13

Pectoral 
muscles 17 15-16 16 16 17 15 16 16 17 16 17 17 17 14 15 14 14 14

Arm muscles 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4
Forearm 
muscles 19 19 18 18 19 19 19 19 19 19 19 19 19 19 18 18 19 20

Hand muscles 30 30 30 34 32-36 22 22 22 21 27 27 27 27 27 20 20 26 21
Total number 
of muscles

130-
132 127-130 128-

135 133-139 133-
138

117-
120

118-
121

118-
119 119-121 123-126 129-131 128-

130 131 129 117-
119

119-
120 126 123

Table 1: Table summarizing the total number of mandibular, hyoid (not including the small facial, extrinsic muscles of the ear), branchial, hypobranchial, pectoral, arm, 
forearm and hand muscles in adults of the primate genera included in our cladistic analyses. Data are from evidence provided by our own dissections and comparisons 
and from a review of the literature (Diogo and Wood [64,65]); note that in some cases there are insufficient data to clarify whether a particular muscle is usually present, or 
not, in a taxon (e.g., the number of branchial muscles of Gorilla is given as 15 to 16 because it is not clear if the salpingopharyngeus is usually present, or not, as a distinct 
muscle in the members of this genus).

http://dx.doi.org/10.4172/2168-9822.1000102


Citation: Diogo R, Matthews LJ, Wood B (2012) A Major Reason to Study Muscle Anatomy: Myology as a Tool for Evolutionary, Developmental, and 
Systematic Biology. J Organ Biol 1:102. doi:10.4172/2168-9822.1000102

Page  6  of 7

Volume 1 • Issue 1 • 1000102J Organ Biol
ISSN: 2168-9822 JOB, an open access journal

renaissance by stimulating an interest in the use of morphological data 
in general, and of muscles in particular, for phylogeny reconstruction.
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